Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 15 de 15
1.
Article En | MEDLINE | ID: mdl-38903904

The Additive Manufacturing Benchmark Series (AM Bench) is a NIST-led organization that provides a continuing series of additive manufacturing benchmark measurements, challenge problems, and conferences with the primary goal of enabling modelers to test their simulations against rigorous, highly controlled additive manufacturing benchmark measurement data. To this end, single-track (1D) and pad (2D) scans on bare plate nickel alloy 718 were completed with thermography, cross-sectional grain orientation and local chemical composition maps, and cross-sectional melt pool size measurements. The laser power, scan speed, and laser spot size were varied for single tracks, and the scan direction was varied for pads. This article focuses on the cross-sectional melt pool size measurements and presents the predictions from challenge problems. Single-track depth correlated with volumetric energy density while width did not (within the studied parameters). The melt pool size for pad scans was greater than single tracks due to heat buildup. Pad scan melt pool depth was reduced when the laser scan direction and gas flow direction were parallel. The melt pool size in pad scans showed little to no trend against position within the pads. Uncertainty budgets for cross-sectional melt pool size from optical micrographs are provided for the purpose of model validation.

2.
Front Pediatr ; 11: 1248733, 2023.
Article En | MEDLINE | ID: mdl-37868272

Introduction: The etiology of most cases of nephrotic syndrome (NS) remains unknown, therefore patients are phenotypically categorized based on response to corticosteroid therapy as steroid sensitive NS (SSNS), or steroid resistant NS (SRNS). Genetic risk factors have been identified for SSNS from unbiased genome-wide association studies (GWAS), however it is unclear if these loci are disease risk loci in other forms of NS such as SRNS. Additionally, it remains unknown if these risk loci are associated with response to therapy. Thus, we investigated the association between SSNS risk loci and therapy response in a large, multi-race cohort of children along the entire spectrum of childhood-onset NS. Methods: We enrolled 1,000 patients with childhood-onset NS comprised of SSNS and SRNS. Genotyping was done using TaqMan and Direct Sanger Sequencing for 9 previously reported childhood SSNS risk loci. We compared the allele frequencies (AF) and variant burden between NS vs. controls and SRNS vs. SSNS. Results: All 9 risk loci were associated with NS compared with healthy controls (p = 3.5 × 10-3-<2.2 × 10-16). Variant burden greater than 7 was associated with risk of SRNS (OR 7.4, 95% CI 4.6-12.0, p = 8.2 × 10-16). Conclusion: Our study showed that genetic risk loci for childhood SSNS are associated with pattern of therapy response, may help predict disease outcome, and set the stage for individualized treatment of NS.

3.
Kidney Int ; 103(5): 839-841, 2023 05.
Article En | MEDLINE | ID: mdl-37085258

Currently, no evidence-based guidelines exist for treatment of children with monogenic steroid-resistant nephrotic syndrome. A retrospective study on 141 patients from Malakasioti et al. revealed that 27.6% responded to calcineurin inhibitor (CNI) treatment, and 75% of responders maintained stable kidney function. Virtually all CNI nonresponders developed progressive loss of kidney function. This study emphasized roles for CNIs in patients with monogenic steroid-resistant nephrotic syndrome, and the need for future studies to identify CNI response biomarkers.


Calcineurin Inhibitors , Nephrotic Syndrome , Child , Humans , Calcineurin Inhibitors/adverse effects , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Retrospective Studies , Biomarkers
4.
Pediatr Nephrol ; 38(7): 2003-2012, 2023 07.
Article En | MEDLINE | ID: mdl-36459247

Steroid-resistant nephrotic syndrome (SRNS) is the most severe form of childhood nephrotic syndrome with an increased risk of progression to chronic kidney disease stage 5. Research endeavors to date have identified more than 80 genes that are associated with SRNS. Most of these genes regulate the structure and function of the podocyte, the visceral epithelial cells of the glomerulus. Although individuals of African ancestry have the highest prevalence of SRNS, especially those from Sub-Saharan Africa (SSA), with rates as high as 30-40% of all cases of nephrotic syndrome, studies focusing on the characterization and understanding of the genetic basis of SRNS in the region are negligible compared with Europe and North America. Therefore, it remains unclear if some of the variants in SRNS genes that are deemed pathogenic for SRNS are truly disease causing, and if the leading causes of monogenic nephrotic syndrome in other populations are the same for children in SSA with SRNS. Other implications of this lack of genetic data for SRNS in the region include the exclusion of children from the region from clinical trials aimed at identifying potential novel therapeutic agents for this severe form of nephrotic syndrome. This review underlines a need for concerted efforts to advance the genetic basis of SRNS in children in SSA. Such endeavors will complement global efforts at understanding the genetic basis of nephrotic syndrome.


Kidney Failure, Chronic , Nephrotic Syndrome , Podocytes , Child , Humans , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/epidemiology , Nephrotic Syndrome/genetics , Kidney Glomerulus/pathology , Kidney Failure, Chronic/therapy , Podocytes/pathology , Africa South of the Sahara/epidemiology , Mutation
5.
Front Pediatr ; 10: 915174, 2022.
Article En | MEDLINE | ID: mdl-35874595

Background: Focal segmental glomerulosclerosis (FSGS) is a major cause of end stage kidney disease, with the collapsing form having the worst prognosis. Study of families with hereditary FSGS has provided insight into disease mechanisms. Methods: In this report, we describe a sibling pair with NUP93 mutations and collapsing FSGS (cFSGS). For each brother, we performed next generation sequencing and segregation analysis by direct sequencing. To determine if the variants found in the index family are a common cause of cFSGS, we screened 7 patients with cFSGS, gleaned from our cohort of 200 patients with FSGS, for variants in NUP93 as well as for APOL1 high-risk genotypes. Results: We identified segregating compound heterozygous NUP93 variants (1) c.1772G > T p.G591V, 2) c.2084T > C p.L695S) in the two brothers. We did not find any pathogenic variants in the seven patients with cFSGS from our cohort, and as expected five of these seven patients carried the APOL1 high-risk genotype. Conclusion: To the best of our knowledge, this is the first report of cFSGS in patients with NUP93 mutations, based on this report, mutations in NUP93 and other nucleoporin genes should be considered when evaluating a child with familial cFSGS. Determining the mechanisms by which these variants cause cFSGS may provide insight into the pathogenesis of the more common primary and virus-mediated forms of cFSGS.

6.
Front Pediatr ; 10: 826330, 2022.
Article En | MEDLINE | ID: mdl-35295700

Glomerular diseases (GDs) are a major cause of chronic kidney disease in children. The conventional approach to diagnosis of GDs includes clinical evaluation and, in most cases, kidney biopsy to make a definitive diagnosis. However, in many cases, clinical presentations of different GDs can overlap, leading to uncertainty in diagnosis and management even after renal biopsy. In this report, we identify a family with clinical diagnoses of postinfectious glomerulonephritis and IgA nephropathy in a parent and two children. Renal biopsies were initially inconclusive; however, genetic testing showed that the two individuals diagnosed at different points with IgA nephropathy carried novel segregating pathogenic variants in COL4A5 gene. We were only able to make the final diagnoses in each of the family members after genetic testing and reverse phenotyping. This case highlights the utility of genetic testing and reverse phenotyping in resolving clinical diagnosis in families with unusual constellations of different glomerulopathies. We propose that clustering of different glomerular disease phenotypes in a family should be an indication for genetic testing followed by reverse phenotyping.

7.
JCI Insight ; 7(2)2022 01 25.
Article En | MEDLINE | ID: mdl-34874915

We performed next-generation sequencing in patients with familial steroid-sensitive nephrotic syndrome (SSNS) and identified a homozygous segregating variant (p.H310Y) in the gene encoding clavesin-1 (CLVS1) in a consanguineous family with 3 affected individuals. Knockdown of the clavesin gene in zebrafish (clvs2) produced edema phenotypes due to disruption of podocyte structure and loss of glomerular filtration barrier integrity that could be rescued by WT CLVS1 but not the p.H310Y variant. Analysis of cultured human podocytes with CRISPR/Cas9-mediated CLVS1 knockout or homozygous H310Y knockin revealed deficits in clathrin-mediated endocytosis and increased susceptibility to apoptosis that could be rescued with corticosteroid treatment, mimicking the steroid responsiveness observed in patients with SSNS. The p.H310Y variant also disrupted binding of clavesin-1 to α-tocopherol transfer protein, resulting in increased reactive oxygen species (ROS) accumulation in CLVS1-deficient podocytes. Treatment of CLVS1-knockout or homozygous H310Y-knockin podocytes with pharmacological ROS inhibitors restored viability to control levels. Taken together, these data identify CLVS1 as a candidate gene for SSNS, provide insight into therapeutic effects of corticosteroids on podocyte cellular dynamics, and add to the growing evidence of the importance of endocytosis and oxidative stress regulation to podocyte function.


Carrier Proteins/genetics , Endocytosis , Nephrotic Syndrome , Oxidative Stress , Podocytes , Adrenal Cortex Hormones , Animals , Apoptosis/drug effects , CRISPR-Cas Systems/genetics , Cells, Cultured , Endocytosis/drug effects , Endocytosis/genetics , Gene Knockout Techniques , Genetic Association Studies , High-Throughput Nucleotide Sequencing/methods , Humans , Nephrotic Syndrome/drug therapy , Nephrotic Syndrome/genetics , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Oxidative Stress/drug effects , Oxidative Stress/genetics , Podocytes/drug effects , Podocytes/metabolism , Reactive Oxygen Species/antagonists & inhibitors , Zebrafish , Zebrafish Proteins
8.
Article En | MEDLINE | ID: mdl-36733901

Laser powder bed fusion (L-PBF) additive manufacturing (AM) requires the careful selection of laser process parameters for each feedstock material and machine, which is a laborious process. Scaling laws based on the laser power, speed, and spot size; melt pool geometry; and thermophysical properties can potentially reduce this effort by transferring knowledge from one material and/or laser system to another. Laser spot size is one critical parameter that is less well studied for scaling laws compared to laser power and scan speed. Consequently, single track laser scans were generated with a spot size (D4σ) range of 50 µm to 322 µm and melt pool aspect ratio (depth over spot radius) range from 0.1 to 7.0. These were characterized by in-situ thermography, cross-sectioning, and optical microscopy. Scaling laws from literature were applied and evaluated based on melt pool depth predictions. Scaling laws that contain a minimum of three dimensionless parameters and account for changing absorption between conduction and keyhole mode provide the most accurate melt pool depth predictions (< 35 % difference from experiments), which is comparable to thermal simulation results from literature for a select number of cases.

9.
J Am Soc Nephrol ; 32(7): 1682-1695, 2021 Jul.
Article En | MEDLINE | ID: mdl-33863784

BACKGROUND: Podocyte dysfunction is the main pathologic mechanism driving the development of FSGS and other morphologic types of steroid-resistant nephrotic syndrome (SRNS). Despite significant progress, the genetic causes of most cases of SRNS have yet to be identified. METHODS: Whole-genome sequencing was performed on 320 individuals from 201 families with familial and sporadic NS/FSGS with no pathogenic mutations in any known NS/FSGS genes. RESULTS: Two variants in the gene encoding regulator of calcineurin type 1 (RCAN1) segregate with disease in two families with autosomal dominant FSGS/SRNS. In vitro, loss of RCAN1 reduced human podocyte viability due to increased calcineurin activity. Cells expressing mutant RCAN1 displayed increased calcineurin activity and NFAT activation that resulted in increased susceptibility to apoptosis compared with wild-type RCAN1. Treatment with GSK-3 inhibitors ameliorated this elevated calcineurin activity, suggesting the mutation alters the balance of RCAN1 regulation by GSK-3ß, resulting in dysregulated calcineurin activity and apoptosis. CONCLUSIONS: These data suggest mutations in RCAN1 can cause autosomal dominant FSGS. Despite the widespread use of calcineurin inhibitors in the treatment of NS, genetic mutations in a direct regulator of calcineurin have not been implicated in the etiology of NS/FSGS before this report. The findings highlight the therapeutic potential of targeting RCAN1 regulatory molecules, such as GSK-3ß, in the treatment of FSGS.

10.
Front Pediatr ; 7: 8, 2019.
Article En | MEDLINE | ID: mdl-30761277

Advances in genome science in the last 20 years have led to the discovery of over 50 single gene causes and genetic risk loci for steroid resistant nephrotic syndrome (SRNS). Despite these advances, the genetic architecture of childhood steroid sensitive nephrotic syndrome (SSNS) remains poorly understood due in large part to the varying clinical course of SSNS over time. Recent exome and genome wide association studies from well-defined cohorts of children with SSNS identified variants in multiple MHC class II molecules such as HLA-DQA1 and HLA-DQB1 as risk factors for SSNS, thus stressing the central role of adaptive immunity in the pathogenesis of SSNS. However, evidence suggests that unknown second hit risk loci outside of the MHC locus and environmental factors also make significant contributions to disease. In this review, we examine what is currently known about the genetics of SSNS, the implications of recent findings on our understanding of pathogenesis of SSNS, and how we can utilize these results and findings from future studies to improve the management of children with nephrotic syndrome.

11.
J Am Soc Nephrol ; 29(8): 2110-2122, 2018 08.
Article En | MEDLINE | ID: mdl-30002222

BACKGROUND: We previously reported that mutations in the anillin (ANLN) gene cause familial forms of FSGS. ANLN is an F-actin binding protein that modulates podocyte cell motility and interacts with the phosphoinositide 3-kinase (PI3K) pathway through the slit diaphragm adaptor protein CD2-associated protein (CD2AP). However, it is unclear how the ANLN mutations cause the FSGS phenotype. We hypothesized that the R431C mutation exerts its pathogenic effects by uncoupling ANLN from CD2AP. METHODS: We conducted in vivo complementation assays in zebrafish to determine the effect of the previously identified missense ANLN variants, ANLNR431C and ANLNG618C during development. We also performed in vitro functional assays using human podocyte cell lines stably expressing wild-type ANLN (ANLNWT ) or ANLNR431C . RESULTS: Experiments in anln-deficient zebrafish embryos showed a loss-of-function effect for each ANLN variant. In human podocyte lines, expression of ANLNR431C increased cell migration, proliferation, and apoptosis. Biochemical characterization of ANLNR431C -expressing podocytes revealed hyperactivation of the PI3K/AKT/mTOR/p70S6K/Rac1 signaling axis and activation of mTOR-driven endoplasmic reticulum stress in ANLNR431C -expressing podocytes. Inhibition of mTOR, GSK-3ß, Rac1, or calcineurin ameliorated the effects of ANLNR431C . Additionally, inhibition of the calcineurin/NFAT pathway reduced the expression of endogenous ANLN and mTOR. CONCLUSIONS: The ANLNR431C mutation causes multiple derangements in podocyte function through hyperactivation of PI3K/AKT/mTOR/p70S6K/Rac1 signaling. Our findings suggest that the benefits of calcineurin inhibition in FSGS may be due, in part, to the suppression of ANLN and mTOR. Moreover, these studies illustrate that rational therapeutic targets for familial FSGS can be identified through biochemical characterization of dysregulated podocyte phenotypes.


Glomerulosclerosis, Focal Segmental/genetics , Microfilament Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , TOR Serine-Threonine Kinases/metabolism , Animals , Apoptosis/genetics , Cell Movement/genetics , Cells, Cultured , Gene Expression Regulation , Glomerulosclerosis, Focal Segmental/pathology , Glomerulosclerosis, Focal Segmental/physiopathology , Humans , Mutation, Missense , Podocytes/metabolism , Sensitivity and Specificity , Signal Transduction , Zebrafish , rac1 GTP-Binding Protein/genetics
12.
Acta Mater ; 139: 244-253, 2017 Oct 15.
Article En | MEDLINE | ID: mdl-29230094

Numerical simulations are used in this work to investigate aspects of microstructure and microseg-regation during rapid solidification of a Ni-based superalloy in a laser powder bed fusion additive manufacturing process. Thermal modeling by finite element analysis simulates the laser melt pool, with surface temperatures in agreement with in situ thermographic measurements on Inconel 625. Geometric and thermal features of the simulated melt pools are extracted and used in subsequent mesoscale simulations. Solidification in the melt pool is simulated on two length scales. For the multicomponent alloy Inconel 625, microsegregation between dendrite arms is calculated using the Scheil-Gulliver solidification model and DICTRA software. Phase-field simulations, using Ni-Nb as a binary analogue to Inconel 625, produced microstructures with primary cellular/dendritic arm spacings in agreement with measured spacings in experimentally observed microstructures and a lesser extent of microsegregation than predicted by DICTRA simulations. The composition profiles are used to compare thermodynamic driving forces for nucleation against experimentally observed precipitates identified by electron and X-ray diffraction analyses. Our analysis lists the precipitates that may form from FCC phase of enriched interdendritic compositions and compares these against experimentally observed phases from 1 h heat treatments at two temperatures: stress relief at 1143 K (870 °C) or homogenization at 1423 K (1150 °C).

13.
PLoS One ; 7(11): e49357, 2012.
Article En | MEDLINE | ID: mdl-23139843

Otx and Mitf transcription factors have been implicated in the development of the retinal pigmented epithelium (RPE), but the relationship between these factors and their specific roles in the development of the RPE have not been fully defined. The role of the three Otx transcription factors (Otx1a, Otx1b, and Otx2) and two Mitf transcription factors (Mitfa and Mitfb) in the development of the zebrafish RPE was explored in these experiments. The loss of Otx activity through morpholino knockdown produced variable eye defects, ranging from delayed RPE pigmentation to severe coloboma, depending on the combination of Otx factors that were targeted. Expression analysis through in situ hybridization demonstrates that otx transcription factors are necessary for the proper expression of mitfa and mitfb while Mitf transcription factors are not required for the expression of otx genes. Surprisingly, the loss of Mitf activity in mitfa, mitfb, or double mitf mutant zebrafish had no effect on RPE pigmentation or development. Moreover, histological analysis revealed that retinal lamination is unaffected in mitf mutants, as well as in otx morphants, even in regions lacking RPE. Otx and Mitf combined loss of function experiments suggest that mitfa and mitfb may still influence zebrafish RPE development. This is further supported by the ability of mitfa to induce pigmentation in the zebrafish retina when misexpressed. These findings suggest that one or more Otx targets in addition to mitfa and mitfb, possibly another mitf family member, are necessary for development of the RPE in zebrafish.


Retinal Pigment Epithelium/embryology , Transcription Factors/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Animals , Cell Lineage/drug effects , Embryo, Nonmammalian/drug effects , Embryo, Nonmammalian/metabolism , Gene Expression Regulation, Developmental/drug effects , Gene Knockdown Techniques , Morpholinos/pharmacology , Mutation/genetics , Phenotype , Pigmentation/drug effects , Pigmentation/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Transcription Factors/genetics , Zebrafish/genetics , Zebrafish Proteins/genetics
14.
J Med Chem ; 55(1): 449-64, 2012 Jan 12.
Article En | MEDLINE | ID: mdl-22172029

A novel set of 2,4,8,22-tetraazatetracyclo[14.3.1.1(3,7).1(9,13)]docosa-1(20),3(22),4,6,9(21),10,12,16,18-nonaene macrocycles were prepared as potential anaplastic lymphoma kinase (ALK) inhibitors, designed to rigidly lock an energy-minimized bioactive conformation of the diaminopyrimidine (DAP) scaffold, a well-documented kinase platform. From 13 analogues prepared, macrocycle 2m showed the most promising in vitro ALK enzymatic (IC(50) = 0.5 nM) and cellular (IC(50) = 10 nM) activities. In addition, macrocycle 2m exhibited a favorable kinase selectivity preference for inhibition of ALK relative to the highly homologous insulin receptor (IR) kinase (IR/ALK ratio of 173). The inclusive in vitro biological results for this set of macrocycles validate this scaffold as a viable kinase template and further corroborate recent DAP/ALK solid state studies indicating that the inverted "U" shaped conformation of the acyclic DAPs is a preferred bioactive conformation.


Antineoplastic Agents/chemical synthesis , Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Anaplastic Lymphoma Kinase , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Drug Design , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Humans , Models, Molecular , Molecular Conformation , Nuclear Proteins/genetics , Nucleophosmin , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Phosphorylation , Receptor Protein-Tyrosine Kinases/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Insulin/antagonists & inhibitors , Structure-Activity Relationship
15.
Dev Dyn ; 240(11): 2529-38, 2011 Nov.
Article En | MEDLINE | ID: mdl-21932325

The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Microphthalmia-Associated Transcription Factor/genetics , Zebrafish Proteins/genetics , Zebrafish/embryology , Zebrafish/genetics , Amino Acid Sequence , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Chromosome Mapping , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Larva/genetics , Larva/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Molecular Sequence Data , Multigene Family , Phylogeny , Protein Isoforms/genetics , Protein Isoforms/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Zebrafish/metabolism , Zebrafish Proteins/metabolism
...