Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 104
1.
J Biol Chem ; 296: 100194, 2021.
Article En | MEDLINE | ID: mdl-33334891

Cohesin is a multiprotein ring complex that regulates 3D genome organization, sister chromatid cohesion, gene expression, and DNA repair. Cohesin is known to be ubiquitinated, although the mechanism, regulation, and effects of cohesin ubiquitination remain poorly defined. We previously used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in human HCT116 cells. Here we report that mass spectrometry analysis of dual-affinity purifications identified the USP13 deubiquitinase as a novel cohesin-interacting protein. Subsequent immunoprecipitation/Western blots confirmed the endogenous interaction in HCT116, 293T, HeLa, and RPE-hTERT cells; demonstrated that the interaction occurs specifically in the soluble nuclear fraction (not in the chromatin); requires the ubiquitin-binding domains (UBA1/2) of USP13; and occurs preferentially during DNA replication. Reciprocal dual-affinity purification of endogenous USP13 followed by mass spectrometry demonstrated that cohesin is its primary interactor in the nucleus. Ectopic expression and CRISPR knockout of USP13 showed that USP13 is paradoxically required for both deubiquitination and ubiquitination of cohesin subunits in human cells. USP13 was dispensable for sister chromatid cohesion in HCT116 and HeLa cells, whereas it was required for the dissociation of cohesin from chromatin as cells transit through mitosis. Together these results identify USP13 as a new cohesin-interacting protein that regulates the ubiquitination of cohesin and its cell cycle regulated interaction with chromatin.


Cell Cycle Proteins/metabolism , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Ubiquitin-Specific Proteases/metabolism , Ubiquitin/metabolism , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Chromatin/genetics , Chromosomal Proteins, Non-Histone/chemistry , Chromosomal Proteins, Non-Histone/genetics , Chromosome Segregation , DNA Repair , DNA Replication , HCT116 Cells , HeLa Cells , Humans , Protein Interaction Domains and Motifs , Ubiquitin-Specific Proteases/chemistry , Ubiquitin-Specific Proteases/genetics , Ubiquitination , Cohesins
2.
J Biol Chem ; 294(22): 8760-8772, 2019 05 31.
Article En | MEDLINE | ID: mdl-31010829

The cohesin complex regulates sister chromatid cohesion, chromosome organization, gene expression, and DNA repair. Cohesin is a ring complex composed of four core subunits and seven regulatory subunits. In an effort to comprehensively identify additional cohesin-interacting proteins, we used gene editing to introduce a dual epitope tag into the endogenous allele of each of 11 known components of cohesin in cultured human cells, and we performed MS analyses on dual-affinity purifications. In addition to reciprocally identifying all known components of cohesin, we found that cohesin interacts with a panoply of splicing factors and RNA-binding proteins (RBPs). These included diverse components of the U4/U6.U5 tri-small nuclear ribonucleoprotein complex and several splicing factors that are commonly mutated in cancer. The interaction between cohesin and splicing factors/RBPs was RNA- and DNA-independent, occurred in chromatin, was enhanced during mitosis, and required RAD21. Furthermore, cohesin-interacting splicing factors and RBPs followed the cohesin cycle and prophase pathway of cell cycle-regulated interactions with chromatin. Depletion of cohesin-interacting splicing factors and RBPs resulted in aberrant mitotic progression. These results provide a comprehensive view of the endogenous human cohesin interactome and identify splicing factors and RBPs as functionally significant cohesin-interacting proteins.


Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Mitosis , Proteomics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/metabolism , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , Cell Line, Tumor , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Microscopy, Fluorescence , Protein Binding , Protein Interaction Maps , RNA Interference , RNA Splicing Factors/antagonists & inhibitors , RNA Splicing Factors/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/genetics , Cohesins
3.
Cell Rep ; 26(7): 1880-1892.e6, 2019 02 12.
Article En | MEDLINE | ID: mdl-30759397

Circadian rhythms are a hallmark of physiology, but how such daily rhythms organize cellular catabolism is poorly understood. Here, we used proteomics to map daily oscillations in autophagic flux in mouse liver and related these rhythms to proteasome activity. We also explored how systemic inflammation affects the temporal structure of autophagy. Our data identified a globally harmonized rhythm for basal macroautophagy, chaperone-mediated autophagy, and proteasomal activity, which concentrates liver proteolysis during the daytime. Basal autophagy rhythms could be resolved into two antiphase clusters that were distinguished by the subcellular location of targeted proteins. Inflammation induced by lipopolysaccharide reprogrammed autophagic flux away from a temporal pattern that favors cytosolic targets and toward the turnover of mitochondrial targets. Our data detail how daily biological rhythms connect the temporal, spatial, and metabolic aspects of protein catabolism.


Autophagy/genetics , Circadian Rhythm/physiology , Proteomics/methods , Humans
4.
J Biol Chem ; 290(37): 22795-804, 2015 Sep 11.
Article En | MEDLINE | ID: mdl-26221039

MutS homolog 2 (MSH2) is an essential DNA mismatch repair (MMR) protein. It interacts with MSH6 or MSH3 to form the MutSα or MutSß complex, respectively, which recognize base-base mispairs and insertions/deletions and initiate the repair process. Mutation or dysregulation of MSH2 causes genomic instability that can lead to cancer. MSH2 is acetylated at its C terminus, and histone deacetylase (HDAC6) deacetylates MSH2. However, whether other regions of MSH2 can be acetylated and whether other histone deacetylases (HDACs) and histone acetyltransferases (HATs) are involved in MSH2 deacetylation/acetylation is unknown. Here, we report that MSH2 can be acetylated at Lys-73 near the N terminus. Lys-73 is highly conserved across many species. Although several Class I and II HDACs interact with MSH2, HDAC10 is the major enzyme that deacetylates MSH2 at Lys-73. Histone acetyltransferase HBO1 might acetylate this residue. HDAC10 overexpression in HeLa cells stimulates cellular DNA MMR activity, whereas HDAC10 knockdown decreases DNA MMR activity. Thus, our study identifies an HDAC10-mediated regulatory mechanism controlling the DNA mismatch repair function of MSH2.


DNA Mismatch Repair , DNA/metabolism , Histone Deacetylases/metabolism , MutS Homolog 2 Protein/metabolism , Acetylation , DNA/genetics , HeLa Cells , Histone Deacetylases/genetics , Humans , MutS Homolog 2 Protein/genetics
5.
Cells ; 3(4): 1131-58, 2014 Dec 10.
Article En | MEDLINE | ID: mdl-25513827

Herpes simplex virus type 1 (HSV-1) is a significant human pathogen that infects a large portion of the human population. Cells deploy a variety of defenses to limit the extent to which the virus can replicate. One such factor is the promyelocytic leukemia (PML) protein, the nucleating and organizing factor of nuclear domain 10 (ND10). PML responds to a number of stimuli and is implicated in intrinsic and innate cellular antiviral defenses against HSV-1. While the role of PML in a number of cellular pathways is controlled by post-translational modifications, the effects of phosphorylation on its antiviral activity toward HSV-1 have been largely unexplored. Consequently, we mapped phosphorylation sites on PML, mutated these and other known phosphorylation sites on PML isoform I (PML-I), and examined their effects on a number of PML's activities. Our results show that phosphorylation at most sites on PML-I is dispensable for the formation of ND10s and colocalization between PML-I and the HSV-1 regulatory protein, ICP0, which antagonizes PML-I function. However, inhibiting phosphorylation at sites near the SUMO-interaction motif (SIM) of PML-I impairs its ability to respond to HSV-1 infection. Overall, our data suggest that PML phosphorylation regulates its antiviral activity against HSV-1.

6.
Sci Signal ; 7(346): ra96, 2014 Oct 07.
Article En | MEDLINE | ID: mdl-25292215

Cytotoxic lymphocytes kill target cells through the polarized release of the contents of intracellular perforin-containing granules. In natural killer (NK) cells, the binding of ß2 integrin to members of the intercellular adhesion molecule family is sufficient to promote not only the adhesion of NK cells to target cells but also the polarization of intracellular lytic granules toward the target. We used NK cells in an experimental system designed to enable us to study the polarization of lytic granules in the absence of their release through degranulation, as well as ß2 integrin signaling independently of inside-out signals from other receptors. Through a proteomics approach, we identified a signaling network centered on an integrin-linked kinase (ILK)-Pyk2-paxillin core that was required for granule and microtubule-organizing center (MTOC) polarization. The conserved Cdc42-Par6 signaling pathway, which controls cell polarity, was also activated by ILK and was required for granule polarization toward the target cell. A subset of the signaling components required for polarization contributed also to the convergence of granules on the MTOC. These results delineate two connected signaling networks that are stimulated upon ß2 integrin engagement and control the polarization of the MTOC and associated lytic granules toward the site of contact with target cells to mediate cellular cytotoxicity.


CD18 Antigens/metabolism , Cell Polarity/physiology , Cytoplasmic Granules/immunology , Killer Cells, Natural/immunology , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/immunology , Adaptor Proteins, Signal Transducing/metabolism , Analysis of Variance , Blotting, Western , Cell Polarity/immunology , Chromatography, High Pressure Liquid , Focal Adhesion Kinase 2/metabolism , Gene Knockdown Techniques , Humans , Killer Cells, Natural/metabolism , Microscopy, Confocal , Microtubule-Organizing Center/physiology , Organic Chemicals , Paxillin/metabolism , Protein Serine-Threonine Kinases/metabolism , Proteomics/methods , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Tandem Mass Spectrometry , cdc42 GTP-Binding Protein/metabolism
7.
J R Soc Interface ; 11(93): 20130942, 2014 Apr 06.
Article En | MEDLINE | ID: mdl-24478280

Cuttlefish, Sepia officinalis, possess neurally controlled, pigmented chromatophore organs that allow rapid changes in skin patterning and coloration in response to visual cues. This process of adaptive coloration is enabled by the 500% change in chromatophore surface area during actuation. We report two adaptations that help to explain how colour intensity is maintained in a fully expanded chromatophore when the pigment granules are distributed maximally: (i) pigment layers as thin as three granules that maintain optical effectiveness and (ii) the presence of high-refractive-index proteins-reflectin and crystallin-in granules. The latter discovery, combined with our finding that isolated chromatophore pigment granules fluoresce between 650 and 720 nm, refutes the prevailing hypothesis that cephalopod chromatophores are exclusively pigmentary organs composed solely of ommochromes. Perturbations to granular architecture alter optical properties, illustrating a role for nanostructure in the agile, optical responses of chromatophores. Our results suggest that cephalopod chromatophore pigment granules are more complex than homogeneous clusters of chromogenic pigments. They are luminescent protein nanostructures that facilitate the rapid and sophisticated changes exhibited in dermal pigmentation.


Chromatophores , Decapodiformes , Pigments, Biological/metabolism , Skin Pigmentation/physiology , Animals , Chromatophores/cytology , Chromatophores/metabolism , Decapodiformes/anatomy & histology , Decapodiformes/physiology
8.
J Biol Chem ; 289(11): 7788-98, 2014 Mar 14.
Article En | MEDLINE | ID: mdl-24448800

The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site.


Bacteriophage P1/metabolism , Escherichia coli Proteins/metabolism , Peptide Chain Elongation, Translational , Peptide Elongation Factor Tu/metabolism , Viral Proteins/metabolism , Amino Acid Motifs , Anti-Bacterial Agents/chemistry , Binding Sites , Cell Proliferation , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Mass Spectrometry , Molecular Docking Simulation , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Structure, Tertiary , Pyridones/chemistry , RNA, Messenger/metabolism , Recombinant Proteins/chemistry , Threonine/chemistry
9.
J Proteome Res ; 12(10): 4351-65, 2013 Oct 04.
Article En | MEDLINE | ID: mdl-24004147

Plasma proteomic experiments performed rapidly and economically using several of the latest high-resolution mass spectrometers were compared. Four quantitative hyperfractionated plasma proteomics experiments were analyzed in replicates by two AB SCIEX TripleTOF 5600 and three Thermo Scientific Orbitrap (Elite/LTQ-Orbitrap Velos/Q Exactive) instruments. Each experiment compared two iTRAQ isobaric-labeled immunodepleted plasma proteomes, provided as 30 labeled peptide fractions, and 480 LC-MS/MS runs delivered >250 GB of data in 2 months. Several analysis algorithms were compared. At 1% false discovery rate, the relative comparative findings concluded that the Thermo Scientific Q Exactive Mass Spectrometer resulted in the highest number of identified proteins and unique sequences with iTRAQ quantitation. The confidence of iTRAQ fold-change for each protein is dependent on the overall ion statistics (Mascot Protein Score) attainable by each instrument. The benchmarking also suggested how to further improve the mass spectrometry parameters and HPLC conditions. Our findings highlight the special challenges presented by the low abundance peptide ions of iTRAQ plasma proteome because the dynamic range of plasma protein abundance is uniquely high compared with cell lysates, necessitating high instrument sensitivity.


Blood Proteins/chemistry , Tandem Mass Spectrometry/methods , Blood Proteins/isolation & purification , Blood Proteins/metabolism , Humans , Immunoprecipitation , Peptide Mapping , Proteomics , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Tandem Mass Spectrometry/instrumentation , Tandem Mass Spectrometry/standards
10.
Proc Natl Acad Sci U S A ; 109(31): 12710-5, 2012 Jul 31.
Article En | MEDLINE | ID: mdl-22802624

The Gram-negative bacteria Yersinia pestis, causative agent of plague, is extremely virulent. One mechanism contributing to Y. pestis virulence is the presence of a type-three secretion system, which injects effector proteins, Yops, directly into immune cells of the infected host. One of these Yop proteins, YopJ, is proapoptotic and inhibits mammalian NF-κB and MAP-kinase signal transduction pathways. Although the molecular mechanism remained elusive for some time, recent work has shown that YopJ acts as a serine/threonine acetyl-transferase targeting MAP2 kinases. Using Drosophila as a model system, we find that YopJ inhibits one innate immune NF-κB signaling pathway (IMD) but not the other (Toll). In fact, we show YopJ mediated serine/threonine acetylation and inhibition of dTAK1, the critical MAP3 kinase in the IMD pathway. Acetylation of critical serine/threonine residues in the activation loop of Drosophila TAK1 blocks phosphorylation of the protein and subsequent kinase activation. In addition, studies in mammalian cells show similar modification and inhibition of hTAK1. These data present evidence that TAK1 is a target for YopJ-mediated inhibition.


Bacterial Proteins/metabolism , Immunity, Innate , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Serine O-Acetyltransferase/metabolism , Yersinia pestis/enzymology , Acetylation , Animals , Bacterial Proteins/immunology , Drosophila melanogaster , HEK293 Cells , Humans , MAP Kinase Kinase Kinases/immunology , NF-kappa B/immunology , NF-kappa B/metabolism , Plague/immunology , Plague/metabolism , Serine O-Acetyltransferase/immunology , Yersinia pestis/immunology , Yersinia pestis/pathogenicity
11.
Mol Cell Biol ; 32(14): 2823-36, 2012 Jul.
Article En | MEDLINE | ID: mdl-22586264

SIRT1 is a NAD(+)-dependent histone H4K16 deacetylase that controls several different normal physiologic and disease processes. Like most histone deacetylases, SIRT1 also deacetylates nonhistone proteins. Here, we show that two members of the MYST (MOZ, Ybf2/Sas3, Sas2, and TIP60) acetyltransferase family, hMOF and TIP60, are SIRT1 substrates. SIRT1 deacetylation of the enzymatic domains of hMOF and TIP60 inhibits their acetyltransferase activity and promotes ubiquitination-dependent degradation of these proteins. Importantly, immediately following DNA damage, the binding of SIRT1 to hMOF and TIP60 is transiently interrupted, with corresponding hMOF/TIP60 hyperacetylation. Lysine-to-arginine mutations in SIRT1-targeted lysines on hMOF and TIP60 repress DNA double-strand break repair and inhibit the ability of hMOF/TIP60 to induce apoptosis in response to DNA double-strand break. Together, these findings uncover novel pathways in which SIRT1 dynamically interacts with and regulates hMOF and TIP60 through deacetylation and provide additional mechanistic insights by which SIRT1 regulates DNA damage response.


Histone Acetyltransferases/metabolism , Sirtuin 1/metabolism , Amino Acid Substitution , Animals , Apoptosis , Cell Line , DNA Breaks, Double-Stranded , DNA Repair , HEK293 Cells , HeLa Cells , Histone Acetyltransferases/genetics , Humans , Lysine Acetyltransferase 5 , Mice , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sirtuin 1/genetics , Substrate Specificity , Ubiquitination
12.
Proc Biol Sci ; 279(1741): 3347-56, 2012 Aug 22.
Article En | MEDLINE | ID: mdl-22553092

Temperatures around hydrothermal vents are highly variable, ranging from near freezing up to 300°C. Nevertheless, animals thrive around vents, some of which live near the known limits of animal thermotolerance. Paralvinella sulfincola, an extremely thermotolerant vent polychaete, and Paralvinella palmiformis, a cooler-adapted congener, are found along the Juan de Fuca Ridge in the northwestern Pacific. We conducted shipboard high-pressure thermotolerance experiments on both species to characterize the physiological adaptations underlying P. sulfincola's pronounced thermotolerance. Quantitative proteomics, expressed sequence tag (EST) libraries and glutathione assays revealed that P. sulfincola (i) exhibited an upregulation in the synthesis and recycling of glutathione with increasing temperature, (ii) downregulated nicotinamide adenine dinucleotide (NADH) and succinate dehydrogenases (key enzymes in oxidative phosphorylation) with increasing temperature, and (iii) maintained elevated levels of heat shock proteins (HSPs) across all treatments. In contrast, P. palmiformis exhibited more typical responses to increasing temperatures (e.g. increasing HSPs at higher temperatures). These data reveal differences in how a mesotolerant and extremely thermotolerant eukaryote respond to thermal stress, and suggest that P. sulfincola's capacity to mitigate oxidative stress via increased synthesis of antioxidants and decreased flux through the mitochondrial electron transport chain enable pronounced thermotolerance. Ultimately, oxidative stress may be the key factor in limiting all metazoan thermotolerance.


Gene Expression Regulation , Hot Temperature , Hydrothermal Vents , Polychaeta/physiology , Proteins/metabolism , Proteomics , Adaptation, Physiological , Animals , Heat-Shock Response , Northwestern United States , Oxidative Stress , Proteins/genetics
13.
J Biol Chem ; 287(11): 7834-44, 2012 Mar 09.
Article En | MEDLINE | ID: mdl-22235124

The mouse and human TPSB2 and TPSAB1 genes encode tetramer-forming tryptases stored in the secretory granules of mast cells (MCs) ionically bound to heparin-containing serglycin proteoglycans. In mice these genes encode mouse MC protease-6 (mMCP-6) and mMCP-7. The corresponding human genes encode a family of serine proteases that collectively are called hTryptase-ß. We previously showed that the α chain of fibrinogen is a preferred substrate of mMCP-7. We now show that this plasma protein also is highly susceptible to degradation by hTryptase-ß· and mMCP-6·heparin complexes and that Lys(575) is a preferred cleavage site in the protein α chain. Because cutaneous mouse MCs store substantial amounts of mMCP-6·heparin complexes in their secretory granules, the passive cutaneous anaphylaxis reaction was induced in the skin of mMCP-6(+)/mMCP-7(-) and mMCP-6(-)/mMCP-7(-) C57BL/6 mice. In support of the in vitro data, fibrin deposits were markedly increased in the skin of the double-deficient mice 6 h after IgE-sensitized animals were given the relevant antigen. Fibrinogen is a major constituent of the edema fluid that accumulates in tissues when MCs degranulate. Our discovery that mouse and human tetramer-forming tryptases destroy fibrinogen before this circulating protein can be converted to fibrin changes the paradigm of how MCs hinder fibrin deposition and blood coagulation internally. Because of the adverse consequences of fibrin deposits in tissues, our data explain why mice and humans lack a circulating protease inhibitor that rapidly inactivates MC tryptases and why mammals have two genes that encode tetramer-forming serine proteases that preferentially degrade fibrinogen.


Blood Coagulation , Fibrin/metabolism , Fibrinogen/metabolism , Heparin/metabolism , Mast Cells/enzymology , Proteolysis , Secretory Vesicles/enzymology , Thrombin/metabolism , Tryptases/metabolism , Anaphylaxis/chemically induced , Anaphylaxis/enzymology , Anaphylaxis/genetics , Anaphylaxis/pathology , Animals , Edema/enzymology , Edema/genetics , Edema/pathology , Fibrin/genetics , Fibrinogen/genetics , Heparin/genetics , Humans , Immunoglobulin E/metabolism , Mast Cells/pathology , Mice , Mice, Knockout , Secretory Vesicles/genetics , Skin/enzymology , Skin/pathology , Thrombin/genetics , Tryptases/genetics
14.
Mol Cell Biol ; 31(23): 4720-34, 2011 Dec.
Article En | MEDLINE | ID: mdl-21947282

DNA methylation and histone acetylation/deacetylation are distinct biochemical processes that control gene expression. While DNA methylation is a common epigenetic signal that inhibits gene transcription, histone deacetylation similarly represses transcription but can be both an epigenetic and nonepigenetic phenomenon. Here we report that the histone deacetylase SIRT1 regulates the activities of DNMT1, a key enzyme responsible for DNA methylation. In mass spectrometry analysis, 12 new acetylated lysine sites were identified in DNMT1. SIRT1 physically associates with DNMT1 and can deacetylate acetylated DNMT1 in vitro and in vivo. Interestingly, deacetylation of different lysines on DNMT1 has different effects on the functions of DNMT1. For example, deacetylation of Lys1349 and Lys1415 in the catalytic domain of DNMT1 enhances DNMT1's methyltransferase activity, while deacetylation of lysine residues in the GK linker decreases DNMT1's methyltransferase-independent transcriptional repression function. Furthermore, deacetylation of all identified acetylated lysine sites in DNMT1 abrogates its binding to SIRT1 and impairs its capability to regulate cell cycle G(2)/M transition. Finally, inhibition of SIRT1 strengthens the silencing effects of DNMT1 on the expression of tumor suppressor genes ER-α and CDH1 in MDA-MB-231 breast cancer cells. Together, these results suggest that SIRT1-mediated deacetylation of DNMT1 is crucial for DNMT1's multiple effects in gene silencing.


DNA (Cytosine-5-)-Methyltransferases/metabolism , Gene Expression Regulation , Sirtuin 1/metabolism , Acetylation , Animals , Cell Cycle Checkpoints , Cell Nucleus/metabolism , Cells, Cultured , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , Enzyme Assays , Gene Expression , Gene Silencing , Histone Deacetylase Inhibitors/pharmacology , Humans , Immunoprecipitation , Kinetics , Mice , Mutagenesis, Site-Directed , Mutation, Missense , RNA Interference , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/genetics , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , p300-CBP Transcription Factors/metabolism
15.
Cell ; 145(4): 513-28, 2011 May 13.
Article En | MEDLINE | ID: mdl-21565611

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Kidney Diseases, Cystic/genetics , Membrane Proteins/genetics , Signal Transduction , Animals , Ataxin-10 , Centrosome/metabolism , Cilia/metabolism , Ciliary Motility Disorders/genetics , Encephalocele/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/metabolism , Mice , NIH 3T3 Cells , Nerve Tissue Proteins/genetics , Polycystic Kidney Diseases/genetics , Retinitis Pigmentosa , Zebrafish
16.
Mol Cell Biol ; 31(13): 2756-71, 2011 Jul.
Article En | MEDLINE | ID: mdl-21536651

Following DNA damage, human cells undergo arrests in the G(1) and G(2) phases of the cell cycle and a simultaneous arrest in cell size. We previously demonstrated that the cell size arrest can be uncoupled from the cell cycle arrest by mutational inactivation of the PTEN tumor suppressor gene. Here we show that the cell size checkpoint is inducible by DNA-damaging chemotherapeutic agents as well as by ionizing radiation and is effectively regulated by PTEN but not by its oncogenic counterpart, PIK3CA. Mutational analysis of PTEN and pharmacological inhibition of Akt revealed that modulation of Akt phosphorylation is unnecessary for cell size checkpoint control. To discover putative PTEN regulators and/or effectors involved in size checkpoint control, we employed a novel endogenous epitope tagging (EET) approach, which revealed that endogenous PTEN interacts at the membrane with an actin-remodeling complex that includes actin, gelsolin, and EPLIN. Pharmacological inhibition of actin remodeling in PTEN(+/+) cells recapitulated the lack of size checkpoint control seen in PTEN(-/-) cells. Taken together, these results provide further support for the existence of a DNA damage-inducible size checkpoint that is regulated by a major tumor suppressor, and they provide a novel Akt-independent mechanism by which PTEN controls cell size.


DNA Damage , Neoplasms/metabolism , Neoplasms/pathology , PTEN Phosphohydrolase/metabolism , Actins/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Size , Humans , PTEN Phosphohydrolase/genetics , Phosphoinositide Phospholipase C/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Radiation, Ionizing
17.
J Biomol Tech ; 22(1): 21-6, 2011 Apr.
Article En | MEDLINE | ID: mdl-21455478

A major challenge for core facilities is determining quantitative protein differences across complex biological samples. Although there are numerous techniques in the literature for relative and absolute protein quantification, the majority is nonroutine and can be challenging to carry out effectively. There are few studies comparing these technologies in terms of their reproducibility, accuracy, and precision, and no studies to date deal with performance across multiple laboratories with varied levels of expertise. Here, we describe an Association of Biomolecular Resource Facilities (ABRF) Proteomics Research Group (PRG) study based on samples composed of a complex protein mixture into which 12 known proteins were added at varying but defined ratios. All of the proteins were present at the same concentration in each of three tubes that were provided. The primary goal of this study was to allow each laboratory to evaluate its capabilities and approaches with regard to: detection and identification of proteins spiked into samples that also contain complex mixtures of background proteins and determination of relative quantities of the spiked proteins. The results returned by 43 participants were compiled by the PRG, which also collected information about the strategies used to assess overall performance and as an aid to development of optimized protocols for the methodologies used. The most accurate results were generally reported by the most experienced laboratories. Among laboratories that used the same technique, values that were closer to the expected ratio were obtained by more experienced groups.


Laboratory Proficiency Testing , Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Bacteria , Cell Extracts/analysis , Escherichia coli , Reproducibility of Results
18.
Proteomics ; 11(8): 1371-81, 2011 Apr.
Article En | MEDLINE | ID: mdl-21394914

Resource (core) facilities have played an ever-increasing role in furnishing the scientific community with specialized instrumentation and expertise for proteomics experiments in a cost-effective manner. The Proteomics Research Group (PRG) of the Association of Biomolecular Resource Facilities (ABRF) has sponsored a number of research studies designed to enable participants to try new techniques and assess their capabilities relative to other laboratories analyzing the same samples. Presented here are results from three PRG studies representing different samples that are typically analyzed in a core facility, ranging from simple protein identification to targeted analyses, and include intentional challenges to reflect realistic studies. The PRG2008 study compares different strategies for the qualitative characterization of proteins, particularly the utility of complementary methods for characterizing truncated protein forms. The use of different approaches for determining quantitative differences for several target proteins in human plasma was the focus of the PRG2009 study. The PRG2010 study explored different methods for determining specific constituents while identifying unforeseen problems that could account for unanticipated results associated with the different samples, and included (15) N-labeled proteins as an additional challenge. These studies provide a valuable educational resource to research laboratories and core facilities, as well as a mechanism for establishing good laboratory practices.


Clinical Laboratory Techniques , Proteins/analysis , Proteomics/methods , Chorionic Gonadotropin/analysis , Glycogen Phosphorylase/analysis , Humans , Prostate-Specific Antigen/analysis , Proteomics/education , Receptor for Advanced Glycation End Products , Receptors, Immunologic/analysis , Research Design
19.
Biochemistry ; 50(12): 2213-22, 2011 Mar 29.
Article En | MEDLINE | ID: mdl-21299233

Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS) based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay, a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e., GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones.


Peptide Hormones/metabolism , Proteomics/methods , Amino Acid Sequence , Animals , Binding, Competitive , Dipeptidyl Peptidase 4/metabolism , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Peptide Hormones/chemistry , Peptide Hydrolases/metabolism , Peptide PHI/chemistry , Peptide PHI/metabolism , Tissue Extracts/metabolism
20.
EMBO Rep ; 11(12): 969-76, 2010 Dec.
Article En | MEDLINE | ID: mdl-20948544

We have identified the E3 ligase Traf7 as a direct MyoD1 target and show that cell cycle exit-an early event in muscle differentiation-is linked to decreased Traf7 expression. Depletion of Traf7 accelerates myogenesis, in part through downregulation of nuclear factor-κB (NF-κB) activity. We used a proteomic screen to identify NEMO, the NF-κB essential modulator, as a Traf7-interacting protein. Finally, we show that ubiquitylation of NF-κB essential modulator is regulated exclusively by Traf7 activity in myoblasts. Our results suggest a new mechanism by which MyoD1 function is coupled to NF-κB activity through Traf7, regulating the balance between cell cycle progression and differentiation during myogenesis.


Muscle Development/genetics , MyoD Protein/metabolism , NF-kappa B/metabolism , Transcription, Genetic , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/genetics , Animals , Cell Cycle/genetics , Cell Differentiation/genetics , Cyclin D1/metabolism , Gene Expression Regulation , I-kappa B Kinase/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Mice , Myoblasts/cytology , Myoblasts/metabolism , Phosphorylation , Protein Binding , Retinoblastoma Protein/metabolism , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/deficiency , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/metabolism , Ubiquitin/metabolism , Ubiquitination
...