Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Environ Sci ; 36(8): 743-755, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37711086

RESUMEN

This review aims to sum up how Non-coding RNAs (ncRNAs) regulate the development of periodontitis and provides a new perspective for understanding the pathogenesis of periodontitis. We explored the ncRNA's dual role in the development of periodontitis by summarizing evidence from previous in vivo and in vitro studies as well as clinical samples. In our review, the downregulation of 18 miRNAs, 22 lncRNAs and 10 circRNAs demonstrates protective roles in periodontitis. In contrast, the expression of other 11 miRNAs, 7 lncRNAs and 6 circRNAs are upregulated in periodontitis, which promote the progression of periodontitis. These dysregulated ncRNAs exert their protective or destructive roles by mainly influencing cell proliferation, differentiation and apoptosis via cross-talking with various molecules or signaling pathways. Our findings suggested which and how ncRNAs promote or delay the progression of periodontitis, which may greatly contribute to diagnose and therapy development of periodontitis based on ncRNAs in the future.


Asunto(s)
MicroARNs , Periodontitis , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Circular , Periodontitis/genética , Apoptosis
2.
Neural Regen Res ; 16(12): 2499-2504, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33907040

RESUMEN

Microglial cells are important resident innate immune components in the central nervous system that are often activated during neuroinflammation. Activated microglia can display one of two phenotypes, M1 or M2, which each play distinct roles in neuroinflammation. Rutin, a dietary flavonoid, exhibits protective effects against neuroinflammation. However, whether rutin is able to influence the M1/M2 polarization of microglia remains unclear. In this study, in vitro BV-2 cell models of neuroinflammation were established using 100 ng/mL lipopolysaccharide to investigate the effects of 1-hour rutin pretreatment on microglial polarization. The results revealed that rutin pretreatment reduced the expression of the proinflammatory cytokines tumor necrosis factor-α, interleukin-1ß, and interleukin-6 and increased the secretion of interleukin-10. Rutin pretreatment also downregulated the expression of the M1 microglial markers CD86 and inducible nitric oxide synthase and upregulated the expression of the M2 microglial markers arginase 1 and CD206. Rutin pretreatment inhibited the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and blocked the phosphorylation of I kappa B kinase and nuclear factor-kappa B. These results showed that rutin pretreatment may promote the phenotypic switch of microglia M1 to M2 by inhibiting the Toll-like receptor 4/nuclear factor-kappa B signaling pathway to alleviate lipopolysaccharide-induced neuroinflammation.

3.
J Neuroinflammation ; 17(1): 292, 2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028343

RESUMEN

BACKGROUND: Sepsis-associated encephalopathy (SAE) is an early and frequent event of infection-induced systemic inflammatory response syndrome. Phosphoinositide 3-kinase γ (PI3Kγ) is linked to neuroinflammation and inflammation-related microglial activity. In homeotherms, variations in ambient temperature (Ta) outside the thermoneutral zone lead to thermoregulatory responses, mainly driven by a gradually increasing sympathetic activity, and may affect disease severity. We hypothesized that thermoregulatory response to hypothermia (reduced Ta) aggravates SAE in PI3Kγ-dependent manner. METHODS: Experiments were performed in wild-type, PI3Kγ knockout, and PI3Kγ kinase-dead mice, which were kept at neutral (30 ± 0.5 °C) or moderately lowered (26 ± 0.5 °C) Ta. Mice were exposed to lipopolysaccharide (LPS, 10 µg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection)-evoked systemic inflammatory response (SIR) and monitored 24 h for thermoregulatory response and blood-brain barrier integrity. Primary microglial cells and brain tissue derived from treated mice were analyzed for inflammatory responses and related cell functions. Comparisons between groups were made with one-way or two-way analysis of variance, as appropriate. Post hoc comparisons were made with the Holm-Sidak test or t tests with Bonferroni's correction for adjustments of multiple comparisons. Data not following normal distribution was tested with Kruskal-Wallis test followed by Dunn's multiple comparisons test. RESULTS: We show that a moderate reduction of ambient temperature triggers enhanced hypothermia of mice undergoing LPS-induced systemic inflammation by aggravated SAE. PI3Kγ deficiency enhances blood-brain barrier injury and upregulation of matrix metalloproteinases (MMPs) as well as an impaired microglial phagocytic activity. CONCLUSIONS: Thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range exacerbates LPS-induced blood-brain barrier injury and neuroinflammation. PI3Kγ serves a protective role in suppressing release of MMPs, maintaining microglial motility and reinforcing phagocytosis leading to improved brain tissue integrity. Thus, preclinical research targeting severe brain inflammation responses is seriously biased when basic physiological prerequisites of mammal species such as preferred ambient temperature are ignored.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Lipopolisacáridos/toxicidad , Encefalopatía Asociada a la Sepsis/enzimología , Encefalopatía Asociada a la Sepsis/fisiopatología , Animales , Animales Recién Nacidos , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/enzimología , Barrera Hematoencefálica/fisiopatología , Temperatura Corporal/efectos de los fármacos , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/efectos de los fármacos , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Encefalopatía Asociada a la Sepsis/inducido químicamente
4.
Front Immunol ; 10: 2492, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781091

RESUMEN

Trained immunity and immune tolerance have been identified as long-term response patterns of the innate immune system. The causes of these opposing reactions remain elusive. Here, we report about differential inflammatory responses of microglial cells derived from neonatal mouse brain to increasing doses of the endotoxin LPS. Prolonged priming with ultra-low LPS doses provokes trained immunity, i.e., increased production of pro-inflammatory mediators in comparison to the unprimed control. In contrast, priming with high doses of LPS induces immune tolerance, implying decreased production of inflammatory mediators and pronounced release of anti-inflammatory cytokines. Investigation of the signaling processes and cell functions involved in these memory-like immune responses reveals the essential role of phosphoinositide 3-kinase γ (PI3Kγ), one of the phosphoinositide 3-kinase species highly expressed in innate immune cells. Together, our data suggest profound influence of preceding contacts with pathogens on the immune response of microglia. The impact of these interactions-trained immunity or immune tolerance-appears to be shaped by pathogen dose.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/inmunología , Microglía/enzimología , Microglía/inmunología , Animales , Animales Recién Nacidos , Encéfalo/citología , Encéfalo/enzimología , Encéfalo/inmunología , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Citocinas/metabolismo , Tolerancia Inmunológica/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Memoria Inmunológica/efectos de los fármacos , Memoria Inmunológica/fisiología , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos
5.
Basic Res Cardiol ; 114(3): 26, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31016449

RESUMEN

Sepsis-induced myocardial depression (SIMD) is an early and frequent consequence of the infection-induced systemic inflammatory response syndrome. In homiotherms, variations in ambient temperature (Ta) outside the thermoneutral zone induce thermoregulatory responses mainly driven by a gradually increased sympathetic activity, which may affect disease severity. We hypothesized that thermoregulatory responses upon reduced Ta exposition aggravate SIMD in mice. Mice were kept at neutral Ta (30 ± 0.5 °C), moderately lowered Ta (26 ± 0.5 °C) or markedly lowered Ta (22 ± 0.5 °C), exposed to lipopolysaccharide- (LPS, 10 µg/g, from Escherichia coli serotype 055:B5, single intraperitoneal injection) evoked shock and monitored for survival, cardiac autonomic nervous system function and left ventricular performance. Primary adult cardiomyocytes and heart tissue derived from treated mice were analyzed for inflammatory responses and signaling pathways of myocardial contractility. We show that a moderate reduction of Ta to 26 °C led to a 40% increased mortality of LPS-treated mice when compared to control mice and that a marked reduction of Ta to 22 °C resulted in an early mortality of all mice. Mice kept at 26 °C exhibited increased heart rate and altered indices of heart rate variability (HRV), indicating sympathovagal imbalance along with aggravated LPS-induced SIMD. This SIMD was associated with reduced myocardial ß-adrenergic receptor expression and suppressed adrenergic signaling, as well as with increased myocardial iNOS expression, nitrotyrosine formation and leukocyte invasion as well as enhanced apoptosis and appearance of contraction band necrosis in heart tissue. While ineffective separately, combined treatment with the ß2-adrenergic receptor (AR) antagonist ICI 118551 (10 ng/gbw) and the inducible nitric oxide synthase (iNOS) inhibitor 1400 W (5 µg/gbw) reversed the increase in LPS-induced mortality and aggravation of SIMD at reduced Ta. Thus, consequences of thermoregulatory adaptation in response to ambient temperatures below the thermoneutral range increase the mortality from LPS-evoked shock and markedly prolong impaired myocardial function. These changes are mitigated by combined ß2-AR and iNOS inhibition.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Regulación de la Temperatura Corporal , Cardiopatías/inducido químicamente , Corazón/inervación , Vivienda para Animales , Contracción Miocárdica , Síndrome de Respuesta Inflamatoria Sistémica/inducido químicamente , Temperatura , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Hemodinámica , Mediadores de Inflamación/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transducción de Señal , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA