Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Physiol Rep ; 9(21): e15068, 2021 11.
Article En | MEDLINE | ID: mdl-34755487

The metabolic syndrome is a cluster of conditions that increase an individual's risk of developing diseases. Being physically active throughout life is known to reduce the prevalence and onset of some aspects of the metabolic syndrome. Furthermore, previous studies have demonstrated that an individual's gut microbiome composition has a large influence on several aspects of the metabolic syndrome. However, the mechanism(s) by which physical activity may improve metabolic health are not well understood. We sought to determine if endurance exercise is sufficient to prevent or ameliorate the development of the metabolic syndrome and its associated diseases. We also analyzed the impact of physical activity under metabolic syndrome progression upon the gut microbiome composition. Utilizing whole-body low-density lipoprotein receptor (LDLR) knockout mice on a "Western Diet," we show that long-term exercise acts favorably upon glucose tolerance, adiposity, and liver lipids. Exercise increased mitochondrial abundance in skeletal muscle but did not reduce liver fibrosis, aortic lesion area, or plasma lipids. Lastly, we observed several changes in gut bacteria and their novel associations with metabolic parameters of clinical importance. Altogether, our results indicate that exercise can ameliorate some aspects of the metabolic syndrome progression and alter the gut microbiome composition.


Gastrointestinal Microbiome , Metabolic Syndrome/physiopathology , Physical Conditioning, Animal/methods , Adiposity , Animals , Glucose/metabolism , Liver/metabolism , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/therapy , Mice , Mice, Inbred C57BL , Mitochondria, Liver/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Running
2.
Front Med (Lausanne) ; 8: 646710, 2021.
Article En | MEDLINE | ID: mdl-34513856

The gut microbiome influences nutrient processing as well as host physiology. Plasma lipid levels have been associated with the microbiome, although the underlying mechanisms are largely unknown, and the effects of dietary lipids on the gut microbiome in humans are not well-studied. We used a compilation of four studies utilizing non-human primates (Chlorocebus aethiops and Macaca fascicularis) with treatments that manipulated plasma lipid levels using dietary and pharmacological techniques, and characterized the microbiome using 16S rDNA. High-fat diets significantly reduced alpha diversity (Shannon) and the Firmicutes/Bacteroidetes ratio compared to chow diets, even when the diets had different compositions and were applied in different orders. When analyzed for differential abundance using DESeq2, Bulleidia, Clostridium, Ruminococcus, Eubacterium, Coprocacillus, Lachnospira, Blautia, Coprococcus, and Oscillospira were greater in both chow diets while Succinivibrio, Collinsella, Streptococcus, and Lactococcus were greater in both high-fat diets (oleic blend or lard fat source). Dietary cholesterol levels did not affect the microbiome and neither did alterations of plasma lipid levels through treatments of miR-33 antisense oligonucleotide (anti-miR-33), Niemann-Pick C1-Like 1 (NPC1L1) antisense oligonucleotide (ASO), and inducible degrader of LDLR (IDOL) ASO. However, a liver X receptor (LXR) agonist shifted the microbiome and decreased bile acid levels. Fifteen genera increased with the LXR agonist, while seven genera decreased. Pseudomonas increased on the LXR agonist and was negatively correlated to deoxycholic acid, cholic acid, and total bile acids while Ruminococcus was positively correlated with taurolithocholic acid and taurodeoxycholic acid. Seven of the nine bile acids identified in the feces significantly decreased due to the LXR agonist, and total bile acids (nmol/g) was reduced by 62%. These results indicate that plasma lipid levels have, at most, a modest effect on the microbiome, whereas bile acids, derived in part from plasma lipids, are likely responsible for the indirect relationship between lipid levels and the microbiome.

3.
mSystems ; 6(1)2021 Feb 16.
Article En | MEDLINE | ID: mdl-33594006

The incidence of type 2 diabetes (T2D) has been increasing globally, and a growing body of evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded by a long prediabetic state characterized by changes in various metabolic parameters. We tested whether the gut microbiome could have predictive potential for T2D development during the healthy and prediabetic disease stages. We used prospective data of 608 well-phenotyped Finnish men collected from the population-based Metabolic Syndrome in Men (METSIM) study to build machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 year) and longer (4 year) period. Our results show that the inclusion of the gut microbiome improves prediction accuracy for modeling T2D-associated parameters such as glycosylated hemoglobin and insulin measures. We identified novel microbial biomarkers and described their effects on the predictions using interpretable machine learning techniques, which revealed complex linear and nonlinear associations. Additionally, the modeling strategy carried out allowed us to compare the stability of model performance and biomarker selection, also revealing differences in short-term and long-term predictions. The identified microbiome biomarkers provide a predictive measure for various metabolic traits related to T2D, thus providing an additional parameter for personal risk assessment. Our work also highlights the need for robust modeling strategies and the value of interpretable machine learning.IMPORTANCE Recent studies have shown a clear link between gut microbiota and type 2 diabetes. However, current results are based on cross-sectional studies that aim to determine the microbial dysbiosis when the disease is already prevalent. In order to consider the microbiome as a factor in disease risk assessment, prospective studies are needed. Our study is the first study that assesses the gut microbiome as a predictive measure for several type 2 diabetes-associated parameters in a longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin levels. These results make the prospect of using the microbiome in personalized medicine promising.

4.
J Nutr ; 150(10): 2716-2728, 2020 10 12.
Article En | MEDLINE | ID: mdl-32856048

BACKGROUND: It is unclear how high fructose consumption induces disparate metabolic responses in genetically diverse mouse strains. OBJECTIVE: We aimed to investigate whether the gut microbiota contributes to differential metabolic responses to fructose. METHODS: Eight-week-old male C57BL/6J (B6), DBA/2J (DBA), and FVB/NJ (FVB) mice were given 8% fructose solution or regular water (control) for 12 wk. The gut microbiota composition in cecum and feces was analyzed using 16S ribosomal DNA sequencing, and permutational multivariate ANOVA (PERMANOVA) was used to compare community across mouse strains, treatments, and time points. Microbiota abundance was correlated with metabolic phenotypes and host gene expression in hypothalamus, liver, and adipose tissues using Biweight midcorrelation. To test the causal role of the gut microbiota in determining fructose response, we conducted fecal transplants from B6 to DBA mice and vice versa for 4 wk, as well as gavaged antibiotic-treated DBA mice with Akkermansia for 9 wk, accompanied with or without fructose treatment. RESULTS: Compared with B6 and FVB, DBA mice had significantly higher Firmicutes to Bacteroidetes ratio and lower baseline abundance of Akkermansia and S24-7 (P < 0.05), accompanied by metabolic dysregulation after fructose consumption. Fructose altered specific microbial taxa in individual mouse strains, such as a 7.27-fold increase in Akkermansia in B6 and 0.374-fold change in Rikenellaceae in DBA (false discovery rate <5%), which demonstrated strain-specific correlations with host metabolic and transcriptomic phenotypes. Fecal transplant experiments indicated that B6 microbes conferred resistance to fructose-induced weight gain in DBA mice (F = 43.1, P < 0.001), and Akkermansia colonization abrogated the fructose-induced weight gain (F = 17.8, P < 0.001) and glycemic dysfunctions (F = 11.8, P = 0.004) in DBA mice. CONCLUSIONS: Our findings support that differential microbiota composition between mouse strains is partially responsible for host metabolic sensitivity to fructose, and that Akkermansia is a key bacterium that confers resistance to fructose-induced metabolic dysregulation.


Bacteria/drug effects , Energy Metabolism/drug effects , Energy Metabolism/genetics , Fructose/pharmacology , Gastrointestinal Microbiome/drug effects , Animals , Cecum/microbiology , Fecal Microbiota Transplantation , Feces/microbiology , Male , Mice , Mice, Inbred Strains , Random Allocation
5.
Mol Metab ; 30: 30-47, 2019 12.
Article En | MEDLINE | ID: mdl-31767179

OBJECTIVE: Lipocalin-2 (LCN2) is a secreted protein involved in innate immunity and has also been associated with several cardiometabolic traits in both mouse and human studies. However, the causal relationship of LCN2 to these traits is unclear, and most studies have examined only males. METHODS: Using adeno-associated viral vectors we expressed LCN2 in either adipose or liver in a tissue specific manner on the background of a whole-body Lcn2 knockout or wildtype mice. Metabolic phenotypes including body weight, body composition, plasma and liver lipids, glucose homeostasis, insulin resistance, mitochondrial phenotyping, and metabolic cage studies were monitored. RESULTS: We studied the genetics of LCN2 expression and associated clinical traits in both males and females in a panel of 100 inbred strains of mice (HMDP). The natural variation in Lcn2 expression across the HMDP exhibits high heritability, and genetic mapping suggests that it is regulated in part by Lipin1 gene variation. The correlation analyses revealed striking tissue dependent sex differences in obesity, insulin resistance, hepatic steatosis, and dyslipidemia. To understand the causal relationships, we examined the effects of expression of LCN2 selectively in liver or adipose. On a Lcn2-null background, LCN2 expression in white adipose promoted metabolic disturbances in females but not males. It acted in an autocrine/paracrine manner, resulting in mitochondrial dysfunction and an upregulation of inflammatory and fibrotic genes. On the other hand, on a null background, expression of LCN2 in liver had no discernible impact on the traits examined despite increasing the levels of circulating LCN2 more than adipose LCN2 expression. The mechanisms underlying the sex-specific action of LCN2 are unclear, but our results indicate that adipose LCN2 negatively regulates its receptor, LRP2 (or megalin), and its repressor, ERα, in a female-specific manner and that the effects of LCN2 on metabolic traits are mediated in part by LRP2. CONCLUSIONS: Following up on our population-based studies, we demonstrate that LCN2 acts in a highly sex- and tissue-specific manner in mice. Our results have important implications for human studies, emphasizing the importance of sex and the tissue source of LCN2.


Adipose Tissue/metabolism , Lipocalin-2/metabolism , Adiposity , Animals , Body Composition , Body Weight , Female , Glucose/analysis , Homeostasis , Insulin Resistance , Lipids/analysis , Lipocalin-2/genetics , Lipocalin-2/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Mice, Knockout , Obesity/metabolism , Sex Factors
6.
J Am Anim Hosp Assoc ; 55(4): 201-209, 2019.
Article En | MEDLINE | ID: mdl-31099604

Three hundred seventy small-breed dogs (<15 kg) undergoing splenectomy for the presence of nodular splenic lesions were evaluated in a retrospective study to assess associations with breeds, malignancy, hemoperitoneum, and median survival time compared with previous studies. Data analyzed included signalment, histopathologic diagnosis, presence or absence of hemoperitoneum, breed associations, and survival times. In the current study, 44% (163/370) of dogs had nonneoplastic splenic lesions and 56% (207/370) had neoplastic lesions. Hemangiosarcoma was present in 27% (100/370) of splenic lesions. Hemoperitoneum was present in 31% (115/370) of dogs, and of this population, 66% (76/115) had malignant splenic lesions. The most common breeds were miniature schnauzers, dachshunds, and beagles, with beagles exhibiting a positive association with malignancy. The presence of hemoperitoneum was associated with malignancy. Distribution for nodular splenic lesions, correlation of hemoperitoneum to malignancy, and median survival time were similar to previous reports in large-breed dogs. Small-breed dogs who present with hemoperitoneum are 2.6 times more likely to have a diagnosis of a malignant splenic lesion. The most common small-breed dogs with nodular splenic lesions were miniature schnauzers, dachshunds, and beagles. Beagles and small-breed terriers were more likely to have malignant splenic lesions, and small-breed terriers were more likely to present with hemoperitoneum.


Dog Diseases/surgery , Splenic Diseases/veterinary , Animals , Dog Diseases/pathology , Dogs , Genetic Predisposition to Disease , Retrospective Studies , Spleen/pathology , Spleen/surgery , Splenectomy/veterinary , Splenic Diseases/genetics , Splenic Diseases/pathology , Splenic Diseases/surgery
7.
mBio ; 9(6)2018 12 11.
Article En | MEDLINE | ID: mdl-30538180

Interindividual variation in the composition of the human gut microbiome was examined in relation to demographic and anthropometric traits, and to changes in dietary saturated fat intake and protein source. One hundred nine healthy men and women aged 21 to 65, with BMIs of 18 to 36, were randomized, after a two-week baseline diet, to high (15% total energy [E])- or low (7%E)-saturated-fat groups and randomly received three diets (four weeks each) in which the protein source (25%E) was mainly red meat (beef, pork) (12%E), white meat (chicken, turkey) (12%E), and nonmeat sources (nuts, beans, soy) (16%E). Taxonomic characterization using 16S ribosomal DNA was performed on fecal samples collected at each diet completion. Interindividual differences in age, body fat (%), height, ethnicity, sex, and alpha diversity (Shannon) were all significant factors, and most samples clustered by participant in the PCoA ordination. The dietary interventions did not significantly alter the overall microbiome community in ordination space, but there was an effect on taxon abundance levels. Saturated fat had a greater effect than protein source on taxon differential abundance, but protein source had a significant effect once the fat influence was removed. Higher alpha diversity predicted lower beta diversity between the experimental and baseline diets, indicating greater resistance to change in people with higher microbiome diversity. Our results suggest that interindividual differences outweighed the influence of these specific dietary changes on the microbiome and that moderate changes in saturated fat level and protein source correspond to modest changes in the microbiome.IMPORTANCE The microbiome has proven to influence health and disease, but how combinations of external factors affect the microbiome is relatively unknown. Diet can cause changes, but this is usually achieved by altering macronutrient ratios and has not focused on dietary protein source or saturated fat intake levels. In addition, each individual's unique microbiome profile can be an important factor during studies, and it has even been shown to affect therapeutic outcomes. We show here that the effects of individual differences outweighed the effect of experimental diets and that protein source is less influential than saturated fat level. This suggests that fat and protein composition, separate from macronutrient ratio and carbohydrate composition, is an important consideration in dietary studies.


Anthropometry , Bacteria/classification , Biological Variation, Individual , Diet/methods , Fats/metabolism , Gastrointestinal Microbiome , Proteins/metabolism , Adult , Animals , Bacteria/genetics , Body Mass Index , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Feces/microbiology , Female , Healthy Volunteers , Humans , Male , Middle Aged , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Young Adult
8.
Circ Res ; 123(10): 1164-1176, 2018 10 26.
Article En | MEDLINE | ID: mdl-30359185

RATIONALE: Gut microbes influence cardiovascular disease and thrombosis risks through the production of trimethylamine N-oxide (TMAO). Microbiota-dependent generation of trimethylamine (TMA)-the precursor to TMAO-is rate limiting in the metaorganismal TMAO pathway in most humans and is catalyzed by several distinct microbial choline TMA-lyases, including the proteins encoded by the cutC/D (choline utilization C/D) genes in multiple human commensals. OBJECTIVE: Direct demonstration that the gut microbial cutC gene is sufficient to transmit enhanced platelet reactivity and thrombosis potential in a host via TMA/TMAO generation has not yet been reported. METHODS AND RESULTS: Herein, we use gnotobiotic mice and a series of microbial colonization studies to show that microbial cutC-dependent TMA/TMAO production is sufficient to transmit heightened platelet reactivity and thrombosis potential in a host. Specifically, we examine in vivo thrombosis potential employing germ-free mice colonized with either high TMA-producing stable human fecal polymcrobial communities or a defined CutC-deficient background microbial community coupled with a CutC-expressing human commensal±genetic disruption of its cutC gene (ie, Clostridium sporogenes Δ cutC). CONCLUSIONS: Collectively, these studies point to the microbial choline TMA-lyase pathway as a rational molecular target for the treatment of atherothrombotic heart disease.


Bacterial Proteins/metabolism , Fecal Microbiota Transplantation , Lyases/metabolism , Platelet Activation , Thrombosis/microbiology , Adult , Animals , Bacterial Proteins/genetics , Choline/metabolism , Clostridium/enzymology , Clostridium/genetics , Female , Gastrointestinal Microbiome , Humans , Lyases/genetics , Male , Methylamines/metabolism , Mice , Mice, Inbred C57BL , Middle Aged , Thrombosis/blood
9.
Nat Med ; 24(9): 1407-1417, 2018 09.
Article En | MEDLINE | ID: mdl-30082863

Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite that enhances both platelet responsiveness and in vivo thrombosis potential in animal models, and TMAO plasma levels predict incident atherothrombotic event risks in human clinical studies. TMAO is formed by gut microbe-dependent metabolism of trimethylamine (TMA) moiety-containing nutrients, which are abundant in a Western diet. Here, using a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme pair, CutC and CutD (CutC/D), we developed inhibitors that are potent, time-dependent, and irreversible and that do not affect commensal viability. In animal models, a single oral dose of a CutC/D inhibitor significantly reduced plasma TMAO levels for up to 3 d and rescued diet-induced enhanced platelet responsiveness and thrombus formation, without observable toxicity or increased bleeding risk. The inhibitor selectively accumulated within intestinal microbes to millimolar levels, a concentration over 1-million-fold higher than needed for a therapeutic effect. These studies reveal that mechanism-based inhibition of gut microbial TMA and TMAO production reduces thrombosis potential, a critical adverse complication in heart disease. They also offer a generalizable approach for the selective nonlethal targeting of gut microbial enzymes linked to host disease limiting systemic exposure of the inhibitor in the host.


Gastrointestinal Microbiome , Thrombosis/microbiology , Animals , Bacteria/drug effects , Bacteria/metabolism , Choline/pharmacology , Diet , Gastrointestinal Microbiome/drug effects , Hexanols/pharmacology , Mice, Inbred C57BL , Oxidoreductases, N-Demethylating/antagonists & inhibitors , Oxidoreductases, N-Demethylating/metabolism , Platelet Aggregation/drug effects
10.
Microorganisms ; 4(1)2016 Jan 04.
Article En | MEDLINE | ID: mdl-27681897

Biofilms are a ubiquitous formation of microbial communities found on surfaces in aqueous environments. These structures have been investigated as biomonitoring indicators for stream heath, and here were used for the potential use in forensic sciences. Biofilm successional development has been proposed as a method to determine the postmortem submersion interval (PMSI) of remains because there are no standard methods for estimating the PMSI and biofilms are ubiquitous in aquatic habitats. We sought to compare the development of epinecrotic (biofilms on Sus scrofa domesticus carcasses) and epilithic (biofilms on unglazed ceramic tiles) communities in two small streams using bacterial automated ribosomal intergenic spacer analysis. Epinecrotic communities were significantly different from epilithic communities even though environmental factors associated with each stream location also had a significant influence on biofilm structure. All communities at both locations exhibited significant succession suggesting that changing communities throughout time is a general characteristic of stream biofilm communities. The implications resulting from this work are that epinecrotic communities have distinctive shifts at the first and second weeks, and therefore the potential to be used in forensic applications by associating successional changes with submersion time to estimate a PMSI. The influence of environmental factors, however, indicates the lack of a successional pattern with the same organisms and a focus on functional diversity may be more applicable in a forensic context.

11.
J Forensic Sci ; 60(6): 1500-10, 2015 11.
Article En | MEDLINE | ID: mdl-26294275

Human remains can be discovered in freshwater or marine ecosystems, circumstances where insects and other invertebrates have infrequently been used for understanding the time of postmortem submersion. In this study, the identification and succession of epinecrotic bacterial communities on vertebrate remains were described during decomposition in a temperate headwater stream during two seasons (summer and winter). Bacterial communities were characterized with 454 pyrosequencing and analyzed at phyletic and generic taxonomic resolutions. There was a significant increase in genera richness over decomposition during both seasons. Additionally, multivariate statistical modeling revealed significant differences in bacterial communities between seasons at both taxonomic resolutions and siginificant genera differences among sampling days within each season, suggesting a succession of these communities. These data are the first to describe aquatic bacterial succession using high-throughput metagenomic sequencing on vertebrate remains submerged in a freshwater habitat, and provide initial evidence for their potential use in forensic investigations.


Bacteria/genetics , High-Throughput Nucleotide Sequencing , Immersion , Postmortem Changes , Animals , DNA, Bacterial/genetics , Forensic Pathology/methods , Fresh Water , Seasons , Swine
12.
FEMS Microbiol Ecol ; 91(6)2015 Jun.
Article En | MEDLINE | ID: mdl-26038240

Stream epilithic biofilm community assembly is influenced in part by environmental factors. Autumn leaf deposition is an annual resource subsidy to streams, but the physical effects of leaves settling on epilithic biofilms has not been investigated.We hypothesized that bacterial and microeukaryotic community assembly would follow a successional sequence that was mediated by abiotic effects that were simulating leaf deposition (reduced light and flow) and by biotic (snail grazing)disturbance. This hypothesis was tested using an in situ experimental manipulation. Ambient biofilms had greater algal biomass and distinct ARISA community profiles compared to biofilms developed under manipulated conditions. There were no significant differences in biofilm characteristics associated with grazing, suggesting that results were driven by reduced light/flow rather than invertebrate disturbance; however, grazing appeared to increase bacterial taxon richness.Interestingly at day 38, all treatments grouped together in ordination space and had similar algal/total biomass ratios. We suggest that algal priming promoted a shift in ambient biofilms but that this effect is dependent upon successional timing of algal establishment. These data demonstrate that abiotic effects were more influential than local grazing disturbance and imply that leaf litter deposition may have bottom-up effects on the stream ecosystem through altered epilithic biofilms.


Bacteria/growth & development , Biofilms/growth & development , Herbivory/physiology , Microbial Consortia/genetics , Plant Leaves/microbiology , Animals , Bacteria/classification , Bacteria/genetics , Base Sequence , Biofilms/classification , Biomass , DNA, Bacterial/genetics , Ecosystem , Seasons , Sequence Analysis, DNA , Snails/physiology , Trees
13.
J Am Anim Hosp Assoc ; 47(6): 428-35, 2011.
Article En | MEDLINE | ID: mdl-22058350

Sixty-one adrenal gland tumors were surgically removed from 60 dogs. Fifty-two dogs underwent elective adrenalectomy and 8 dogs underwent emergency adrenalectomy for acute adrenal hemorrhage. Size of adrenal tumors ranged from 10 mm to 80 mm. Histopathology confirmed a diagnosis of adrenocortical tumor in 47 dogs, 26 of which were malignant. Pheochromocytoma was diagnosed in 11 dogs. Six dogs had tumor invasion of the caudal vena cava. Of the seven dogs that did not survive the perioperative period, four underwent emergency adrenalectomy. No dogs with tumor invasion of the caudal vena cava died perioperatively. Perioperative morality rates were 5.7% for dogs that underwent elective adrenalectomy and 50% for dogs that underwent emergency adrenalectomy for acute adrenal hemorrhage. Median survival time was 492 days for the 53 dogs that survived the perioperative period. Of the factors analyzed, only adrenal tumor size and the presence of acute adrenal hemorrhage had predictive values for perioperative mortality. Those dogs that survived the perioperative period had extended survival times of up to 1,590 days. The mortality rate associated with elective adrenalectomy in dogs may be lower than previously reported. Dogs with very large tumors or acute adrenal hemorrhage may have a more guarded prognosis.


Adrenal Gland Neoplasms/veterinary , Dog Diseases/surgery , Adrenal Gland Neoplasms/surgery , Animals , Dog Diseases/mortality , Dog Diseases/pathology , Dogs , Elective Surgical Procedures/veterinary , Emergency Treatment/veterinary , Female , Male , Neoplasm Metastasis , Ohio/epidemiology , Pheochromocytoma/surgery , Pheochromocytoma/veterinary , Postoperative Complications/veterinary , Retrospective Studies , Survival Analysis
...