Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem ; 16(6): 913-921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38531969

RESUMEN

Post-translational modifications (PTMs) dynamically regulate cellular processes. Lysine undergoes a range of acylations, including malonylation, succinylation (SucK) and glutarylation (GluK). These PTMs increase the size of the lysine side chain and reverse its charge from +1 to -1 under physiological conditions, probably impacting protein structure and function. To understand the functional roles of these PTMs, homogeneously modified proteins are required for biochemical studies. While the site-specific encoding of PTMs and their mimics via genetic code expansion has facilitated the characterization of the functional roles of many PTMs, negatively charged lysine acylations have defied this approach. Here we describe site-specific incorporation of SucK and GluK into proteins via temporarily masking their negative charge through thioester derivatives. We prepare succinylated and glutarylated bacterial and mammalian target proteins, including non-refoldable multidomain proteins. This allows us to study how succinylation and glutarylation impact enzymatic activity of metabolic enzymes and regulate protein-DNA and protein-protein interactions in biological processes from replication to ubiquitin signalling.


Asunto(s)
Código Genético , Procesamiento Proteico-Postraduccional , Ácido Succínico , Ácido Succínico/metabolismo , Ácido Succínico/química , Humanos , Lisina/química , Lisina/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteínas/genética , Glutaratos/metabolismo , Glutaratos/química
2.
Chem Sci ; 15(6): 2229-2235, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38332832

RESUMEN

Dibenzoannulated cyclooctynes have emerged as valuable compounds for bioorthogonal reactions. They are commonly used in combination with azides in strain-promoted 1,3-dipolar cycloadditions. They are typically, however, unreactive towards 3,6-disubstituted tetrazines in inverse electron-demand Diels-Alder cycloadditions. Recently a dibenzoannulated bicyclo[6.1.0]nonyne derivative (DMBO) with a cyclopropane fused to the cyclooctyne core was described, which showed surprising reactivity towards tetrazines. To elucidate the unusual reactivity of DMBO, we performed density functional theory calculations and revealed that a tub-like structure in the transition state results in a much lower activation barrier than in the absence of cyclopropane fusion. The same transition state geometry is found for different cycloalkanes fused to the cyclooctyne core albeit higher activation barriers are observed for increased ring sizes. This conformation is energetically unfavored for previously known dibenzoannulated cyclooctynes and allows tetrazines and azides to approach DMBO from the face rather than the edge, a trajectory that was hitherto not observed for this class of activated dieno- and dipolarophiles.

3.
J Am Chem Soc ; 145(36): 19513-19517, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642301

RESUMEN

Azomethine imines are valuable substrates for chemical synthesis in organic solvents that often require anhydrous conditions. Here, we introduce C,N-cyclic-N'-acyl azomethine imines (AMIs) to bioorthogonal reactions in an aqueous environment. These AMIs are stable under physiological conditions and react rapidly (k2 = 0.1-250 M-1 s-1, depending on pH) and chemoselectively with isonitriles in the presence of biological nucleophiles, including thiols. Live-cell imaging of cell-surface-bound isonitriles underlines the biocompatibility of the AMI-isonitrile ligation, and simultaneous one-pot triple-protein labeling demonstrates its orthogonality to commonly used bioorthogonal reactions, such as the SPAAC and iEDDA ligations.


Asunto(s)
Compuestos Azo , Iminas , Membrana Celular , Biología
4.
J Biol Chem ; 298(12): 102677, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36336075

RESUMEN

Cytokines of the interleukin 12 (IL-12) family are assembled combinatorially from shared α and ß subunits. A common theme is that human IL-12 family α subunits remain incompletely structured in isolation until they pair with a designate ß subunit. Accordingly, chaperones need to support and control specific assembly processes. It remains incompletely understood, which chaperones are involved in IL-12 family biogenesis. Here, we site-specifically introduce photocrosslinking amino acids into the IL-12 and IL-23 α subunits (IL-12α and IL-23α) for stabilization of transient chaperone-client complexes for mass spectrometry. Our analysis reveals that a large set of endoplasmic reticulum chaperones interacts with IL-12α and IL-23α. Among these chaperones, we focus on protein disulfide isomerase (PDI) family members and reveal IL-12 family subunits to be clients of several incompletely characterized PDIs. We find that different PDIs show selectivity for different cysteines in IL-12α and IL-23α. Despite this, PDI binding generally stabilizes unassembled IL-12α and IL-23α against degradation. In contrast, α:ß assembly appears robust, and only multiple simultaneous PDI depletions reduce IL-12 secretion. Our comprehensive analysis of the IL-12/IL-23 chaperone machinery reveals a hitherto uncharacterized role for several PDIs in this process. This extends our understanding of how cells accomplish the task of specific protein assembly reactions for signaling processes. Furthermore, our findings show that cytokine secretion can be modulated by targeting specific endoplasmic reticulum chaperones.


Asunto(s)
Citocinas , Proteína Disulfuro Isomerasas , Humanos , Interleucina-12 , Interleucina-23 , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pliegue de Proteína , Retículo Endoplásmico
5.
J Am Chem Soc ; 144(29): 13118-13126, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35850488

RESUMEN

Asparaginyl endopeptidases (AEPs) have recently been widely utilized for peptide and protein modification. Labeling is however restricted to protein termini, severely limiting flexibility and scope in creating diverse conjugates as needed for therapeutic and diagnostic applications. Here, we use genetic code expansion to site-specifically modify target proteins with an isopeptide-linked glycylglycine moiety that serves as an acceptor nucleophile in AEP-mediated transpeptidation with various probes containing a tripeptidic recognition motif. Our approach allows simple and flexible labeling of recombinant proteins at any internal site and leaves a minimal, entirely peptidic footprint (NGG) in the conjugation product. We show site-specific labeling of diverse target proteins with various biophysical probes, including dual labeling at an internal site and the N-terminus. Furthermore, we harness AEP-mediated transpeptidation for generation of ubiquitin- and ubiquitin-like-modifier conjugates bearing a native isopeptide bond and only one point mutation in the linker region.


Asunto(s)
Cisteína Endopeptidasas , Péptidos , Cisteína Endopeptidasas/metabolismo , Proteínas Recombinantes/metabolismo , Ubiquitina/genética
6.
Angew Chem Int Ed Engl ; 61(10): e202111085, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847623

RESUMEN

Approaches for profiling protease substrates are critical for defining protease functions, but remain challenging tasks. We combine genetic code expansion, photocrosslinking and proteomics to identify substrates of the mitochondrial (mt) human caseinolytic protease P (hClpP). Site-specific incorporation of the diazirine-bearing amino acid DiazK into the inner proteolytic chamber of hClpP, followed by UV-irradiation of cells, allows to covalently trap substrate proteins of hClpP and to substantiate hClpP's major involvement in maintaining overall mt homeostasis. In addition to confirming many of the previously annotated hClpP substrates, our approach adds a diverse set of new proteins to the hClpP interactome. Importantly, our workflow allows identifying substrate dynamics upon application of external cues in an unbiased manner. Identification of unique hClpP-substrate proteins upon induction of mt oxidative stress, suggests that hClpP counteracts oxidative stress by processing of proteins that are involved in respiratory chain complex synthesis and maturation as well as in catabolic pathways.


Asunto(s)
Reactivos de Enlaces Cruzados/metabolismo , Endopeptidasa Clp/metabolismo , Mitocondrias/enzimología , Reactivos de Enlaces Cruzados/química , Endopeptidasa Clp/química , Humanos , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Especificidad por Sustrato
7.
Nat Commun ; 12(1): 6515, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764289

RESUMEN

The post-translational modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) represents one of the most important regulators in eukaryotic biology. Polymeric Ub/Ubl chains of distinct topologies control the activity, stability, interaction and localization of almost all cellular proteins and elicit a variety of biological outputs. Our ability to characterize the roles of distinct Ub/Ubl topologies and to identify enzymes and receptors that create, recognize and remove these modifications is however hampered by the difficulty to prepare them. Here we introduce a modular toolbox (Ubl-tools) that allows the stepwise assembly of Ub/Ubl chains in a flexible and user-defined manner facilitated by orthogonal sortase enzymes. We demonstrate the universality and applicability of Ubl-tools by generating distinctly linked Ub/Ubl hybrid chains, and investigate their role in DNA damage repair. Importantly, Ubl-tools guarantees straightforward access to target proteins, site-specifically modified with distinct homo- and heterotypic (including branched) Ub chains, providing a powerful approach for studying the functional impact of these complex modifications on cellular processes.


Asunto(s)
Polímeros/química , Ubiquitina/metabolismo , Daño del ADN/genética , Daño del ADN/fisiología , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional , Ubiquitina/genética , Ubiquitinación/genética , Ubiquitinación/fisiología
8.
Artículo en Inglés | MEDLINE | ID: mdl-34585143

RESUMEN

Bioorthogonal chemistry represents a class of high-yielding chemical reactions that proceed rapidly and selectively in biological environments without side reactions towards endogenous functional groups. Rooted in the principles of physical organic chemistry, bioorthogonal reactions are intrinsically selective transformations not commonly found in biology. Key reactions include native chemical ligation and the Staudinger ligation, copper-catalysed azide-alkyne cycloaddition, strain-promoted [3 + 2] reactions, tetrazine ligation, metal-catalysed coupling reactions, oxime and hydrazone ligations as well as photoinducible bioorthogonal reactions. Bioorthogonal chemistry has significant overlap with the broader field of 'click chemistry' - high-yielding reactions that are wide in scope and simple to perform, as recently exemplified by sulfuryl fluoride exchange chemistry. The underlying mechanisms of these transformations and their optimal conditions are described in this Primer, followed by discussion of how bioorthogonal chemistry has become essential to the fields of biomedical imaging, medicinal chemistry, protein synthesis, polymer science, materials science and surface science. The applications of bioorthogonal chemistry are diverse and include genetic code expansion and metabolic engineering, drug target identification, antibody-drug conjugation and drug delivery. This Primer describes standards for reproducibility and data deposition, outlines how current limitations are driving new research directions and discusses new opportunities for applying bioorthogonal chemistry to emerging problems in biology and biomedicine.

9.
Nucleic Acids Res ; 49(11): e62, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-33684219

RESUMEN

The genetic code of mammalian cells can be expanded to allow the incorporation of non-canonical amino acids (ncAAs) by suppressing in-frame amber stop codons (UAG) with an orthogonal pyrrolysyl-tRNA synthetase (PylRS)/tRNAPylCUA (PylT) pair. However, the feasibility of this approach is substantially hampered by unpredictable variations in incorporation efficiencies at different stop codon positions within target proteins. Here, we apply a proteomics-based approach to quantify ncAA incorporation rates at hundreds of endogenous amber stop codons in mammalian cells. With these data, we compute iPASS (Identification of Permissive Amber Sites for Suppression; available at www.bultmannlab.eu/tools/iPASS), a linear regression model to predict relative ncAA incorporation efficiencies depending on the surrounding sequence context. To verify iPASS, we develop a dual-fluorescence reporter for high-throughput flow-cytometry analysis that reproducibly yields context-specific ncAA incorporation efficiencies. We show that nucleotides up- and downstream of UAG synergistically influence ncAA incorporation efficiency independent of cell line and ncAA identity. Additionally, we demonstrate iPASS-guided optimization of ncAA incorporation rates by synonymous exchange of codons flanking the amber stop codon. This combination of in silico analysis followed by validation in living mammalian cells substantially simplifies identification as well as adaptation of sites within a target protein to confer high ncAA incorporation rates.


Asunto(s)
Aminoácidos/metabolismo , Código Genético , Animales , Línea Celular , Codón , Codón de Terminación , Simulación por Computador , Células Madre Embrionarias/metabolismo , Citometría de Flujo , Genes Reporteros , Células HEK293 , Humanos , Modelos Lineales , Ratones , Mutación , Proteómica
10.
Nat Commun ; 12(1): 1564, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33692360

RESUMEN

The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a-GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations.


Asunto(s)
Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/química , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Proteínas de Unión al GTP rab1/química , Proteínas de Unión al GTP rab1/metabolismo , Proteínas de Unión al GTP rab5/química , Proteínas de Unión al GTP rab5/metabolismo , Beclina-1/química , Beclina-1/genética , Beclina-1/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Endosomas/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Estructura Secundaria de Proteína , Tomografía , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteína de Clasificación Vacuolar VPS15/química , Proteína de Clasificación Vacuolar VPS15/genética , Proteína de Clasificación Vacuolar VPS15/metabolismo , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab5/genética
11.
Nat Commun ; 12(1): 460, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33469029

RESUMEN

Legionella pneumophila infects eukaryotic cells by forming a replicative organelle - the Legionella containing vacuole. During this process, the bacterial protein DrrA/SidM is secreted and manipulates the activity and post-translational modification (PTM) states of the vesicular trafficking regulator Rab1. As a result, Rab1 is modified with an adenosine monophosphate (AMP), and this process is referred to as AMPylation. Here, we use a chemical approach to stabilise low-affinity Rab:DrrA complexes in a site-specific manner to gain insight into the molecular basis of the interaction between the Rab protein and the AMPylation domain of DrrA. The crystal structure of the Rab:DrrA complex reveals a previously unknown non-conventional Rab-binding site (NC-RBS). Biochemical characterisation demonstrates allosteric stimulation of the AMPylation activity of DrrA via Rab binding to the NC-RBS. We speculate that allosteric control of DrrA could in principle prevent random and potentially cytotoxic AMPylation in the host, thereby perhaps ensuring efficient infection by Legionella.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas Bacterianas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/patología , Proteínas de Unión al GTP rab1/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/ultraestructura , Sitios de Unión/genética , Cristalografía por Rayos X , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/aislamiento & purificación , Factores de Intercambio de Guanina Nucleótido/ultraestructura , Guanosina Trifosfato/metabolismo , Humanos , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Fagocitosis , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Proteínas de Unión al GTP rab1/genética , Proteínas de Unión al GTP rab1/aislamiento & purificación , Proteínas de Unión al GTP rab1/ultraestructura
12.
Nat Chem ; 12(11): 980-982, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33077926
13.
Curr Opin Chem Biol ; 58: 112-120, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32911429

RESUMEN

In recent years it has become possible to genetically encode an expanded set of designer amino acids with tailored chemical and physical properties (dubbed unnatural amino acids, UAAs) into proteins in living cells by expanding the genetic code. Together with developments in chemistries that are amenable to and selective within physiological settings, these strategies have started to have a big impact on biological studies, as they enable exciting in cellulo applications. Here we highlight recent advances to covalently stabilize transient protein-protein interactions and capture enzyme substrate-complexes in living cells using proximity-triggered and residue-selective photo-induced crosslinking approaches. Furthermore, we describe recent efforts in controlling enzyme activity with photocaged UAAs and in extending their application to a variety of enzymatic scaffolds. In addition, we discuss the site-specific incorporation of UAAs mimicking post-translational modifications (PTMs) and approaches to generate natively-linked ubiquitin-protein conjugates to probe the role of PTMs in modulating complex cellular networks.


Asunto(s)
Código Genético , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/genética , Supervivencia Celular , Humanos , Proteínas/metabolismo
15.
Nat Commun ; 11(1): 3727, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694502

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Nat Commun ; 11(1): 1219, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139682

RESUMEN

Methylation of a conserved lysine in C-terminal domain of the molecular chaperone Hsp90 was shown previously to affect its in vivo function. However, the underlying mechanism remained elusive. Through a combined experimental and computational approach, this study shows that this site is very sensitive to sidechain modifications and crucial for Hsp90 activity in vitro and in vivo. Our results demonstrate that this particular lysine serves as a switch point for the regulation of Hsp90 functions by influencing its conformational cycle, ATPase activity, co-chaperone regulation, and client activation of yeast and human Hsp90. Incorporation of the methylated lysine via genetic code expansion specifically shows that upon modification, the conformational cycle of Hsp90 is altered. Molecular dynamics simulations including the methylated lysine suggest specific conformational changes that are propagated through Hsp90. Thus, methylation of the C-terminal lysine allows a precise allosteric tuning of Hsp90 activity via long distances.


Asunto(s)
Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/metabolismo , Lisina/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Secuencia Conservada , Lisina/genética , Metilación , Simulación de Dinámica Molecular , Mutación/genética , Nucleótidos/metabolismo , Relación Estructura-Actividad
17.
Chembiochem ; 21(13): 1861-1867, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32011787

RESUMEN

Proteins that terminally fail to acquire their native structure are detected and degraded by cellular quality control systems. Insights into cellular protein quality control are key to a better understanding of how cells establish and maintain the integrity of their proteome and of how failures in these processes cause human disease. Here we have used genetic code expansion and fast bio-orthogonal reactions to monitor protein turnover in mammalian cells through a fluorescence-based assay. We have used immune signaling molecules (interleukins) as model substrates and shown that our approach preserves normal cellular quality control, assembly processes, and protein functionality and works for different proteins and fluorophores. We have further extended our approach to a pulse-chase type of assay that can provide kinetic insights into cellular protein behavior. Taken together, this study establishes a minimally invasive method to investigate protein turnover in cells as a key determinant of cellular homeostasis.


Asunto(s)
Colorantes Fluorescentes/química , Interleucinas/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Células HEK293 , Semivida , Humanos , Interleucinas/química , Interleucinas/genética , Cinética , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
18.
Angew Chem Int Ed Engl ; 58(44): 15876-15882, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31476269

RESUMEN

Inverse electron-demand Diels-Alder cycloadditions (iEDDAC) between tetrazines and strained alkenes/alkynes have emerged as essential tools for studying and manipulating biomolecules. A light-triggered version of iEDDAC (photo-iEDDAC) is presented that confers spatio-temporal control to bioorthogonal labeling in vitro and in cellulo. A cyclopropenone-caged dibenzoannulated bicyclo[6.1.0]nonyne probe (photo-DMBO) was designed that is unreactive towards tetrazines before light-activation, but engages in iEDDAC after irradiation at 365 nm. Aminoacyl tRNA synthetase/tRNA pairs were discovered for efficient site-specific incorporation of tetrazine-containing amino acids into proteins in living cells. In situ light activation of photo-DMBO conjugates allows labeling of tetrazine-modified proteins in living E. coli. This allows proteins in living cells to be modified in a spatio-temporally controlled manner and may be extended to photo-induced and site-specific protein labeling in animals.


Asunto(s)
Compuestos Bicíclicos con Puentes/química , Ciclopropanos/química , Proteínas de Escherichia coli/química , Colorantes Fluorescentes/química , Compuestos Heterocíclicos con 1 Anillo/química , Luz , Compuestos Bicíclicos con Puentes/síntesis química , Reacción de Cicloadición , Colorantes Fluorescentes/síntesis química , Estructura Molecular , Procesos Fotoquímicos
19.
Biochemistry ; 58(24): 2703-2705, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31181902

Asunto(s)
Alquinos , Proteínas , Bacterias
20.
Chem Commun (Camb) ; 55(33): 4793-4796, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30945708

RESUMEN

We report the genetically encoded incorporation of phenylacetyl protected lysine (PacK) into proteins in Escherichia coli. This unnatural side-chain modification can be enzymatically removed using either penicillin G acylase (PGA) or, surprisingly, the sirtuin SrtN from Bacillus subtilis. Our approach expands the toolbox to reversibly control protein structure and function under very mild and non-denaturing conditions, as demonstrated by triggering the activity of the nonribosomal peptide synthetase GrsA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA