Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 11(5): e1001557, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667326

RESUMEN

ATP-fuelled molecular motors are responsible for rapid and specific transfer of double-stranded DNA during several fundamental processes, such as cell division, sporulation, bacterial conjugation, and viral DNA transport. A dramatic example of intercompartmental DNA transfer occurs during sporulation in Bacillus subtilis, in which two-thirds of a chromosome is transported across a division septum by the SpoIIIE ATPase. Here, we use photo-activated localization microscopy, structured illumination microscopy, and fluorescence fluctuation microscopy to investigate the mechanism of recruitment and assembly of the SpoIIIE pump and the molecular architecture of the DNA translocation complex. We find that SpoIIIE assembles into ∼45 nm complexes that are recruited to nascent sites of septation, and are subsequently escorted by the constriction machinery to the center of sporulation and division septa. SpoIIIE complexes contain 47±20 SpoIIIE molecules, a majority of which are assembled into hexamers. Finally, we show that directional DNA translocation leads to the establishment of a compartment-specific, asymmetric complex that exports DNA. Our data are inconsistent with the notion that SpoIIIE forms paired DNA conducting channels across fused membranes. Rather, our results support a model in which DNA translocation occurs through an aqueous DNA-conducting pore that could be structurally maintained by the divisional machinery, with SpoIIIE acting as a checkpoint preventing membrane fusion until completion of chromosome segregation. Our findings and proposed mechanism, and our unique combination of innovating methodologies, are relevant to the understanding of bacterial cell division, and may illuminate the mechanisms of other complex machineries involved in DNA conjugation and protein transport across membranes.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Conjugación Genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Microscopía Fluorescente , Esporas Bacterianas/metabolismo
2.
Plant Mol Biol ; 52(6): 1169-80, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-14682616

RESUMEN

For this work, Lotus japonicus transgenic plants were constructed expressing a fusion reporter gene consisting of the genes beta-glucuronidase (gus) and green fluorescent protein (gfp) under control of the soybean auxin-responsive promoter GH3. These plants expressed GUS and GFP in the vascular bundle of shoots, roots and leafs. Root sections showed that in mature parts of the roots GUS is mainly expressed in phloem and vascular parenchyma of the vascular cylinder. By detecting GUS activity, we describe the auxin distribution pattern in the root of the determinate nodulating legume L. japonicus during the development of nodulation and also after inoculation with purified Nod factors, N-naphthylphthalamic acid (NPA) and indoleacetic acid (IAA). Differently than white clover, which forms indeterminate nodules, L. japonicus presented a strong GUS activity at the dividing outer cortical cells during the first nodule cell divisions. This suggests different auxin distribution pattern between the determinate and indeterminate nodulating legumes that may be responsible of the differences in nodule development between these groups. By measuring of the GFP fluorescence expressed 21 days after treatment with Nod factors or bacteria we were able to quantify the differences in GH3 expression levels in single living roots. In order to correlate these data with auxin transport capacity we measured the auxin transport levels by a previously described radioactive method. At 48 h after inoculation with Nod factors, auxin transport showed to be increased in the middle root segment. The results obtained indicate that L. japonicus transformed lines expressing the GFP and GUS reporters under the control of the GH3 promoter are suitable for the study of auxin distribution in this legume.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Lotus/metabolismo , Raíces de Plantas/metabolismo , Alphaproteobacteria/crecimiento & desarrollo , Transporte Biológico , Glucuronidasa/genética , Glucuronidasa/metabolismo , Proteínas Fluorescentes Verdes , Ácidos Indolacéticos/farmacología , Lipopolisacáridos/farmacología , Lotus/genética , Lotus/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ftalimidas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Recombinantes de Fusión/efectos de los fármacos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Elementos de Respuesta/genética , Rhizobium/crecimiento & desarrollo , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA