Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(7): 2185-2195, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39022349

RESUMEN

High-grade serous ovarian cancer is the most common and lethal gynecologic malignancy, which is often attributed to the lack of available screenings, allowing the disease to progress unnoticed until it is diagnosed at more aggressive stages. As such, identifying signals in the tumor microenvironment involved in the primary metastasis of tumorigenic fallopian tube epithelial (FTE) cells to the ovary could provide new avenues for prevention, diagnostics, or therapeutic intervention. Since our previous work identified that the interaction of tumorigenic FTE and the ovary causes the release of norepinephrine (NE) from the ovary, we intended to determine the effects of ovarian NE on signaling and invasion of tumorigenic FTE models and high-grade serous ovarian cancer cell lines. We demonstrate that NE does not universally enhance migration, invasion, or adhesion by using multiple cell types but does alter specific oncogenic protein expression in certain models. In vivo, we found that blocking NE signaling via slow-release propranolol pellets significantly increased survival time in mice injected intraperitoneally with murine FTE cells engineered to stably express shRNA for PTEN and an activated KRAS expression construct. Finally, we identified that the metabolome released from the ovary is variable depending upon which cell type it is cocultured with, suggesting that distinct driver mutations in fallopian tube epithelial tumor models and early lesions can alter specific metabolomes within the surrounding ovarian microenvironment. These metabolomes provide the next frontier for evaluating local signals of the tumor microenvironment that facilitate ovarian spread of FTE lesions.

2.
Cell Mol Gastroenterol Hepatol ; 18(3): 101362, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788899

RESUMEN

BACKGROUND & AIMS: There is limited information on how the liver-to-gut axis contributes to alcohol-associated liver disease (AALD). We previously identified that high-mobility group box-1 (HMGB1) undergoes oxidation in hepatocytes and demonstrated elevated serum levels of oxidized HMGB1 ([O] HMGB1) in alcoholic patients. Since interleukin-1 beta (IL-1B) increases in AALD, we hypothesized hepatocyte-derived [O] HMGB1 could interact with IL-1B to activate a pro-inflammatory program that, besides being detrimental to the liver, drives intestinal barrier dysfunction. RESULTS: Alcohol-fed RageΔMye mice exhibited decreased nuclear factor kappa B signaling, a pro-inflammatory signature, and reduced total intestinal permeability, resulting in protection from AALD. In addition, [O] HMGB1 bound and signaled through the receptor for advanced-glycation end-products (RAGE) in myeloid cells, driving hepatic inflammation, intestinal permeability, and increased portal blood lipopolysaccharide in AALD. We identified that [O] HMGB1 formed a complex with IL-1B, which was found in the livers of patients with acute alcoholic hepatitis and mice with AALD. This complex originated from the liver, because it was absent in the intestine when hepatocytes did not produce [O] HMGB1. Mechanistically, the complex bound RAGE in Kupffer cells and macrophages induced a pro-inflammatory program. Moreover, it bound RAGE in intestinal macrophages and epithelial cells, leading to intestinal inflammation, altered intestinal epithelial cell tight junction protein expression, increased intestinal permeability, and elevated portal blood lipopolysaccharide, enhancing AALD pathogenesis. CONCLUSIONS: We identified a protein complex of liver origin that amplifies the pro-inflammatory feedback loop in AALD; therefore, targeting this complex could have significant therapeutic potential.

3.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 781-794, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503560

RESUMEN

BACKGROUND: Previously, we demonstrated that Spp1-/- mice exhibit a greater susceptibility to alcohol-induced liver injury than wild-type (WT) mice. Notably, alcohol triggers the expression of osteopontin (encoded by SPP1) in hepatocytes. However, the specific role of hepatocyte-derived SPP1 in either mitigating or exacerbating alcohol-associated liver disease (AALD) has yet to be elucidated. We hypothesized that hepatocyte-derived SPP1 plays a role in AALD by modulating the regulation of steatosis. METHODS: We analyzed hepatic SPP1 expression using four publicly available datasets from patients with alcoholic hepatitis (AH). Additionally, we examined SPP1 expression in the livers of WT mice subjected to either a control or ethanol Lieber-DeCarli (LDC) diet for 6 weeks. We compared the relationship between SPP1 expression and significantly dysregulated genes in AH with controls using correlation and enrichment analyses. To investigate the specific impact of hepatocyte-derived SPP1, we generated hepatocyte-specific Spp1 knock-out (Spp1ΔHep) mice and subjected them to either a control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS: Alcohol induced hepatic SPP1 expression in both humans and mice. Our analysis, focusing on genes correlated with SPP1, revealed an enrichment of fatty acid oxidation (FAO) in three datasets, and peroxisome proliferator-activated receptor signaling in one dataset. Notably, FAO genes correlating with SPP1 were downregulated in patients with AH. Ethanol-fed WT mice exhibited higher serum-free fatty acids (FFAs), adipose tissue lipolysis, and hepatic fatty acid (FA) transporters. In contrast, ethanol-fed Spp1ΔHep mice displayed lower liver triglycerides, FFAs, and serum alanine transaminase and greater FAO gene expression than WT mice, indicating a protective effect against AALD. Primary hepatocytes from Spp1∆Hep mice exhibited heightened expression of genes encoding proteins involved in FAO. CONCLUSIONS: Alcohol induces the expression of SPP1 in hepatocytes, leading to impaired FAO and contributing to the development of AALD.

4.
J Hepatol ; 80(3): 482-494, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37989401

RESUMEN

BACKGROUND & AIMS: High-mobility group box-1 (HMGB1) significantly increases and undergoes post-translational modifications (PTMs) in response to liver injury. Since oxidative stress plays a major role in liver fibrosis and induces PTMs in proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. METHODS: We used ESI-LC-MS (electrospray ionization-liquid chromatography-mass spectrometry) to study PTMs of HMGB1 during fibrosis progression and resolution. Conditional knockout mice were used for functional analyses. RESULTS: We identified that disulfide ([O]) and sulfonated ([SO3]) HMGB1 increase during carbon tetrachloride-induced liver fibrosis progression, however, while [O] HMGB1 declines, [SO3] HMGB1 drops but remains, during fibrosis resolution. Conditional knockout of Hmgb1 revealed that production of [O] and [SO3] HMGB1 occurs mostly in hepatocytes. Co-injection of [O] HMGB1 worsens carbon tetrachloride-induced liver fibrosis more than co-injection of [H] HMGB1. Conversely, ablation of [O] Hmgb1 in hepatocytes reduces liver fibrosis. Moreover, ablation of the receptor for advanced-glycation end-products (Rage) reveals that the profibrogenic effect of [O] HMGB1 is mediated by RAGE signaling in hepatic stellate cells (HSCs). Notably, injection of [SO3] HMGB1 accelerates fibrosis resolution due to RAGE-dependent stimulation of HSC apoptosis. Importantly, gene signatures activated by redox-sensitive HMGB1 isoforms in mice, classify patients with fibrosis according to fibrosis and inflammation scores. CONCLUSION: Dynamic changes in hepatocyte-derived [O] and [SO3] HMGB1 signal through RAGE-dependent mechanisms on HSCs to drive their profibrogenic phenotype and fate, contributing to progression and resolution of liver fibrosis. IMPACT AND IMPLICATIONS: Since oxidative stress plays a major role in liver fibrosis and induces post-translational modifications of proteins, we hypothesized that redox-sensitive HMGB1 isoforms contribute to liver fibrosis progression and resolution. This study is significant because a rise in [H] HMGB1 could flag 'patient at risk', the presence of [O] HMGB1 could suggest 'disease in progress or active scarring', while the appearance of [SO3] HMGB1 could point at 'resolution under way'. The latter could be used as a readout for response to pharmacological intervention with anti-fibrotic agents.


Asunto(s)
Tetracloruro de Carbono , Proteína HMGB1 , Animales , Humanos , Ratones , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Cirrosis Hepática/etiología , Ratones Noqueados , Oxidación-Reducción , Isoformas de Proteínas , Receptor para Productos Finales de Glicación Avanzada/metabolismo
5.
Hepatol Commun ; 7(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38055645

RESUMEN

BACKGROUND: Liver cancer is increasing due to the rise in metabolic dysfunction-associated steatohepatitis (MASH). High-mobility group box-1 (HMGB1) is involved in the pathogenesis of chronic liver disease, but its role in MASH-associated liver cancer is unknown. We hypothesized that an increase in hepatocyte-derived HMGB1 in a mouse model of inactivation of PTEN that causes MASH could promote MASH-induced tumorigenesis. METHODS: We analyzed publicly available transcriptomics datasets, and to explore the effect of overexpressing HMGB1 in cancer progression, we injected 1.5-month-old Pten∆Hep mice with adeno-associated virus serotype-8 (AAV8) vectors to overexpress HMGB1-EGFP or EGFP, and sacrificed them at 3, 9 and 11 months of age. RESULTS: We found that HMGB1 mRNA increases in human MASH and MASH-induced hepatocellular carcinoma (MASH-HCC) compared to healthy livers. Male and female Pten∆Hep mice overexpressing HMGB1 showed accelerated liver tumor development at 9 and 11 months, respectively, with increased tumor size and volume, compared to control Pten∆Hep mice. Moreover, Pten∆Hep mice overexpressing HMGB1, had increased incidence of mixed HCC-intrahepatic cholangiocarcinoma (iCCA). All iCCAs were positive for nuclear YAP and SOX9. Male Pten∆Hep mice overexpressing HMGB1 showed increased cell proliferation and F4/80+ cells at 3 and 9 months. CONCLUSION: Overexpression of HMGB1 in hepatocytes accelerates liver tumorigenesis in Pten∆Hep mice, enhancing cell proliferation and F4/80+ cells to drive MASH-induced liver cancer.


Asunto(s)
Neoplasias de los Conductos Biliares , Carcinoma Hepatocelular , Hígado Graso , Proteína HMGB1 , Neoplasias Hepáticas , Animales , Femenino , Humanos , Lactante , Masculino , Ratones , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos , Carcinogénesis/genética , Carcinoma Hepatocelular/patología , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Proteína HMGB1/genética , Neoplasias Hepáticas/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo
6.
J Nat Prod ; 86(9): 2102-2110, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37643353

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Lack of early detection methods, limited therapeutic agents, and low 5-year survival rate reflect the urgent need to develop new therapies. Eupenifeldin, a bistropolone, originally isolated from Eupenicillium brefeldianum, is a cytotoxic fungal metabolite. In three HSGOC cell lines (OVCAR3, OVCAR5, OVCAR8), eupenifeldin was found to have an IC50 value less than 10 nM, while 10 times higher concentrations were required for cytotoxicity in nontumorigenic fallopian tube secretory epithelial cell lines (FTSEC). An in vivo hollow fiber assay showed significant cytotoxicity in OVCAR3. Eupenifeldin significantly increased Annexin V staining in OVCAR3 and -8, but not OVCAR5. Eupenifeldin activated caspases 3/7 in OVCAR3, OVCAR5, and OVCAR8; however, cleaved PARP was only detected in OVCAR3. Quantitative proteomics performed on OVCAR3 implicated ferroptosis as the most enriched cell death pathway. However, validation experiments did not support ferroptosis as part of the cytotoxic mechanism of eupenifeldin. Autophagic flux and LC3B puncta assays found that eupenifeldin displayed weak autophagic induction in OVCAR3. Inhibition of autophagy by cotreatment with bafilomycin reduced the toxicity of eupenifeldin, supporting the idea that induction of autophagy contributes to the cytotoxic mechanism of eupenifeldin.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis , Línea Celular Tumoral
7.
Nat Commun ; 14(1): 3737, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349300

RESUMEN

Only praziquantel is available for treating schistosomiasis, a disease affecting more than 200 million people. Praziquantel-resistant worms have been selected for in the lab and low cure rates from mass drug administration programs suggest that resistance is evolving in the field. Thioredoxin glutathione reductase (TGR) is essential for schistosome survival and a validated drug target. TGR inhibitors identified to date are irreversible and/or covalent inhibitors with unacceptable off-target effects. In this work, we identify noncovalent TGR inhibitors with efficacy against schistosome infections in mice, meeting the criteria for lead progression indicated by WHO. Comparisons with previous in vivo studies with praziquantel suggests that these inhibitors outperform the drug of choice for schistosomiasis against juvenile worms.


Asunto(s)
Esquistosomiasis , Esquistosomicidas , Animales , Ratones , Esquistosomicidas/farmacología , Esquistosomicidas/uso terapéutico , Praziquantel/farmacología , Schistosoma , NADH NADPH Oxidorreductasas/farmacología , NADH NADPH Oxidorreductasas/uso terapéutico , Schistosoma mansoni
8.
Sci Rep ; 13(1): 8734, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253812

RESUMEN

Breast cancer risk continues to increase post menopause. Anti-estrogen therapies are available to prevent postmenopausal breast cancer in high-risk women. However, their adverse effects have reduced acceptability and overall success in cancer prevention. Natural products such as hops (Humulus lupulus) and three pharmacopeial licorice (Glycyrrhiza) species have demonstrated estrogenic and chemopreventive properties, but little is known regarding their effects on aromatase expression and activity as well as pro-proliferation pathways in human breast tissue. We show that Gycyrrhiza inflata (GI) has the highest aromatase inhibition potency among these plant extracts. Moreover, phytoestrogens such as liquiritigenin which is common in all licorice species have potent aromatase inhibitory activity, which is further supported by computational docking of their structures in the binding pocket of aromatase. In addition, GI extract and liquiritigenin suppress aromatase expression in the breast tissue of high-risk postmenopausal women. Although liquiritigenin has estrogenic effects in vitro, with preferential activity through estrogen receptor (ER)-ß, it reduces estradiol-induced uterine growth in vivo. It downregulates RNA translation, protein biosynthesis, and metabolism in high-risk women's breast tissue. Finally, it reduces the rate of MCF-7 cell proliferation, with repeated dosing. Collectively, these data suggest that liquiritigenin has breast cancer prevention potential for high-risk postmenopausal women.


Asunto(s)
Neoplasias de la Mama , Glycyrrhiza , Femenino , Humanos , Neoplasias de la Mama/prevención & control , Neoplasias de la Mama/metabolismo , Aromatasa/metabolismo , Inhibidores de la Aromatasa/farmacología , Estrógenos/metabolismo , Glycyrrhiza/química , Receptor beta de Estrógeno/metabolismo , Biosíntesis de Proteínas
9.
Mol Pharm ; 20(6): 3049-3059, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37155928

RESUMEN

Verticillins are epipolythiodioxopiperazine alkaloids isolated from a fungus with nanomolar anti-tumor activity in high-grade serous ovarian cancer (HGSOC). HGSOC is the fifth leading cause of death in women, and natural products continue to be an inspiration for new drug entities to help tackle chemoresistance. Verticillin D was recently found in a new fungal strain and compared to verticillin A. Both compounds exhibited nanomolar cytotoxic activity against OVCAR4 and OVCAR8 HGSOC cell lines, significantly reduced 2D foci and 3D spheroids, and induced apoptosis. In addition, verticillin A and verticillin D reduced tumor burden in vivo using OVCAR8 xenografts in the peritoneal space as a model. Unfortunately, mice treated with verticillin D displayed signs of liver toxicity. Tolerability studies to optimize verticillin A formulation for in vivo delivery were performed and compared to a semi-synthetic succinate version of verticillin A to monitor bioavailability in athymic nude females. Formulation of verticillins achieved tolerable drug delivery. Thus, formulation studies are effective at improving tolerability and demonstrating efficacy for verticillins.


Asunto(s)
Antineoplásicos , Cistadenocarcinoma Seroso , Neoplasias Ováricas , Femenino , Humanos , Ratones , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Indoles/uso terapéutico , Cistadenocarcinoma Seroso/tratamiento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patología , Neoplasias Ováricas/patología , Línea Celular Tumoral
10.
Gastroenterology ; 165(1): 201-217, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37028770

RESUMEN

BACKGROUND & AIMS: Nonalcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, hepatocyte ballooning degeneration, and fibrosis, all of which increase the risk of progression to end-stage liver disease. Osteopontin (OPN, SPP1) plays an important role in macrophage (MF) biology, but whether MF-derived OPN affects NASH progression is unknown. METHODS: We analyzed publicly available transcriptomic datasets from patients with NASH, and used mice with conditional overexpression or ablation of Spp1 in myeloid cells and liver MFs, and fed them a high-fat, fructose, and cholesterol diet mimicking the Western diet, to induce NASH. RESULTS: This study demonstrated that MFs with high expression of SPP1 are enriched in patients and mice with nonalcoholic fatty liver disease (NAFLD), and show metabolic but not pro-inflammatory properties. Conditional knockin of Spp1 in myeloid cells (Spp1KI Mye) or in hepatic macrophages (Spp1KI LvMF) conferred protection, whereas conditional knockout of Spp1 in myeloid cells (Spp1ΔMye) worsened NASH. The protective effect was mediated by induction of arginase-2 (ARG2), which enhanced fatty acid oxidation (FAO) in hepatocytes. Induction of ARG2 stemmed from enhanced production of oncostatin-M (OSM) in MFs from Spp1KI Mye mice. OSM activated STAT3 signaling, which upregulated ARG2. In addition to hepatic effects, Spp1KI Mye also protected through sex-specific extrahepatic mechanisms. CONCLUSION: MF-derived OPN protects from NASH, by upregulating OSM, which increases ARG2 through STAT3 signaling. Further, the ARG2-mediated increase in FAO reduces steatosis. Therefore, enhancing the OPN-OSM-ARG2 crosstalk between MFs and hepatocytes may be beneficial for patients with NASH.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Osteopontina , Animales , Femenino , Masculino , Ratones , Dieta Alta en Grasa , Dieta Occidental , Modelos Animales de Enfermedad , Hígado/patología , Cirrosis Hepática/patología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Osteopontina/genética , Osteopontina/metabolismo
11.
Hepatology ; 78(3): 771-786, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37016762

RESUMEN

BACKGROUND AND AIMS: Early allograft dysfunction (EAD) is a severe event leading to graft failure after liver transplant (LT). Extracellular high-mobility group box-1 (HMGB1) is a damage-associated molecular pattern that contributes to hepatic ischemia-reperfusion injury (IRI). However, the contribution of intracellular HMGB1 to LT graft injury remains elusive. We hypothesized that intracellular neutrophil-derived HMGB1 from recipients protects from post-LT EAD. APPROACH AND RESULTS: We generated mice with conditional ablation or overexpression of Hmgb1 in hepatocytes, myeloid cells, or both. We performed LTs and injected lipopolysaccharide (LPS) to evaluate the effect of intracellular HMGB1 in EAD. Ablation of Hmgb1 in hepatocytes and myeloid cells of donors and recipients exacerbated early allograft injury after LT. Ablation of Hmgb1 from liver grafts did not affect graft injury; however, lack of Hmgb1 from recipient myeloid cells increased reactive oxygen species (ROS) and inflammation in liver grafts and exacerbated injury. Neutrophils lacking HMGB1 were more activated, showed enhanced pro-oxidant and pro-inflammatory signatures, and reduced biosynthesis and metabolism of inositol polyphosphates (InsPs). On LT reperfusion or LPS treatment, there was significant neutrophil mobilization and infiltration into the liver and enhanced production of ROS and pro-inflammatory cytokines when intracellular Hmgb1 was absent. Depletion of neutrophils using anti-Ly6G antibody attenuated graft injury in recipients with myeloid cell Hmgb1 ablation. CONCLUSIONS: Neutrophil HMGB1 derived from recipients is central to regulate their activation, limits the production of ROS and pro-inflammatory cytokines, and protects from early liver allograft injury.


Asunto(s)
Proteína HMGB1 , Trasplante de Hígado , Daño por Reperfusión , Ratones , Animales , Neutrófilos/metabolismo , Proteína HMGB1/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Daño por Reperfusión/metabolismo , Aloinjertos , Citocinas/metabolismo
12.
Nutrients ; 15(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36986136

RESUMEN

Progesterone functions as a steroid hormone involved in female reproductive physiology. While some reproductive disorders manifest with symptoms that can be treated by progesterone or synthetic progestins, recent data suggest that women also seek botanical supplements to alleviate these symptoms. However, botanical supplements are not regulated by the U.S. Food and Drug Administration and therefore it is important to characterize and quantify the inherent active compounds and biological targets of supplements within cellular and animal systems. In this study, we analyzed the effect of two natural products, the flavonoids, apigenin and kaempferol, to determine their relationship to progesterone treatment in vivo. According to immunohistochemical analysis of uterine tissue, kaempferol and apigenin have some progestogenic activity, but do not act in exactly the same manner as progesterone. More specifically, kaempferol treatment did not induce HAND2, did not change proliferation, and induced ZBTB16 expression. Additionally, while apigenin treatment did not appear to dramatically affect transcripts, kaempferol treatment altered some transcripts (44%) in a similar manner to progesterone treatment but had some unique effects as well. Kaempferol regulated primarily unfolded protein response, androgen response, and interferon-related transcripts in a similar manner to progesterone. However, the effects of progesterone were more significant in regulating thousands of transcripts making kaempferol a selective modifier of signaling in the mouse uterus. In summary, the phytoprogestins, apigenin and kaempferol, have progestogenic activity in vivo but also act uniquely.


Asunto(s)
Quempferoles , Progesterona , Ratones , Animales , Femenino , Progesterona/farmacología , Quempferoles/farmacología , Apigenina/farmacología , Progestinas/farmacología , Útero
13.
Hepatology ; 78(3): 741-757, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999534

RESUMEN

BACKGROUND AND AIMS: HCC, the third leading cause of cancer-related death, arises in the context of liver fibrosis. Although HCC is generally poorly fibrogenic, some tumors harbor focal intratumor extracellular matrix (ECM) deposits called "fibrous nests." To date, the molecular composition and clinical relevance of these ECM deposits have not been fully defined. APPROACH AND RESULTS: We performed quantitative matrisome analysis by tandem mass tags mass spectrometry in 20 human cancer specific matrisome (HCCs) with high or low-grade intratumor fibrosis and matched nontumor tissues, as well as in 12 livers from mice treated with vehicle, carbon tetrachloride, or diethylnitrosamine. We found 94 ECM proteins differentially abundant between high and low-grade fibrous nests, including interstitial and basement membrane components, such as several collagens, glycoproteins, proteoglycans, enzymes involved in ECM stabilization and degradation, and growth factors. Pathway analysis revealed a metabolic switch in high-grade fibrosis, with enhanced glycolysis and decreased oxidative phosphorylation. Integrating the quantitative proteomics with transcriptomics from HCCs and nontumor livers (n = 2,285 samples), we identified a subgroup of fibrous nest HCCs, characterized by cancer-specific ECM remodeling, expression of the WNT/TGFB (S1) subclass signature, and poor patient outcome. Fibrous nest HCCs abundantly expressed an 11-fibrous-nest - protein signature, associated with poor patient outcome, by multivariate Cox analysis, and validated by multiplex immunohistochemistry. CONCLUSIONS: Matrisome analysis highlighted cancer-specific ECM deposits, typical of the WNT/TGFB HCC subclass, associated with poor patient outcomes. Hence, histologic reporting of intratumor fibrosis in HCC is of clinical relevance.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Fibrosis , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
14.
Cell Mol Gastroenterol Hepatol ; 14(4): 813-839, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811073

RESUMEN

BACKGROUND & AIMS: The gut-liver axis plays a key role in the pathogenesis of alcohol-associated liver disease (ALD). We demonstrated that Opn-/- develop worse ALD than wild-type (WT) mice; however, the role of intestinal osteopontin (OPN) in ALD remains unknown. We hypothesized that overexpression of OPN in intestinal epithelial cells (IECs) could ameliorate ALD by preserving the gut microbiome and the intestinal barrier function. METHODS: OpnKI IEC, OpnΔIEC, and WT mice were fed control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS: OpnKI IEC but not OpnΔIEC mice showed improved intestinal barrier function and protection from ALD. There were less pathogenic and more beneficial bacteria in ethanol-fed OpnKI IEC than in WT mice. Fecal microbiome transplant (FMT) from OpnKI IEC to WT mice protected from ALD. FMT from ethanol-fed WT to OpnKI IEC mice failed to induce ALD. Antimicrobial peptides, Il33, pSTAT3, aryl hydrocarbon receptor (Ahr), and tight-junction protein expression were higher in IECs from jejunum of ethanol-fed OpnKI IEC than of WT mice. Ethanol-fed OpnKI IEC showed more tryptophan metabolites and short-chain fatty acids in portal serum than WT mice. FMT from OpnKI IEC to WT mice enhanced IECs Ahr and tight-junction protein expression. Oral administration of milk OPN replicated the protective effect of OpnKI IEC mice in ALD. CONCLUSION: Overexpression of OPN in IECs or administration of milk OPN maintain the intestinal microbiome by intestinal antimicrobial peptides. The increase in tryptophan metabolites and short-chain fatty acids signaling through the Ahr in IECs, preserve the intestinal barrier function and protect from ALD.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Microbioma Gastrointestinal , Intestinos , Hepatopatías Alcohólicas , Osteopontina , Animales , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/complicaciones , Etanol/toxicidad , Ácidos Grasos Volátiles , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiología , Interleucina-33 , Intestinos/metabolismo , Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Osteopontina/genética , Osteopontina/metabolismo , Receptores de Hidrocarburo de Aril , Triptófano
15.
Hepatol Commun ; 6(8): 2155-2169, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35344292

RESUMEN

Silencing the Hippo kinases mammalian sterile 20-like 1 and 2 (MST1/2) activates the transcriptional coactivator yes-associated protein (YAP) in human hepatocellular carcinoma (HCC). Hepatocyte-derived high-mobility group box-1 (HMGB1) regulates YAP expression; however, its contribution to HCC in the context of deregulated Hippo signaling is unknown. Here, we hypothesized that HMGB1 is required for hepatocarcinogenesis by activating YAP in Hippo signaling-deficient (Mst1/2ΔHep ) mice. Mst1/2ΔHep mice developed HCC within 3.5 months of age and had increased hepatic expression of HMGB1 and elevated YAP activity compared to controls. To understand the contribution of HMGB1, we generated Mst1/2&Hmgb1ΔHep mice. They exhibited decreased YAP activity, cell proliferation, inflammation, fibrosis, atypical ductal cell expansion, and HCC burden at 3.5 months compared to Mst1/2∆Hep mice. However, Mst1/2&Hmgb1ΔHep mice were smaller, developed hyperbilirubinemia, had more liver injury with intrahepatic biliary defects, and had reduced hemoglobin compared to Mst1/2ΔHep mice. Conclusion: Hepatic HMGB1 promotes hepatocarcinogenesis by regulation of YAP activity; nevertheless, it maintains intrahepatic bile duct physiology under Hippo signaling deficiency.


Asunto(s)
Carcinoma Hepatocelular , Proteína HMGB1 , Vía de Señalización Hippo , Hiperbilirrubinemia , Neoplasias Hepáticas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Proteína HMGB1/genética , Humanos , Hiperbilirrubinemia/genética , Neoplasias Hepáticas/genética , Ratones , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
16.
Hepatol Commun ; 6(4): 692-709, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34730871

RESUMEN

Osteopontin (OPN) expression correlates with tumor progression in many cancers, including hepatocellular carcinoma (HCC); however, its role in the onset of HCC remains unclear. We hypothesized that increased hepatocyte-derived OPN is a driver of hepatocarcinogenesis. Analysis of a tissue microarray of 366 human samples revealed a continuous increase in OPN expression during hepatocarcinogenesis. In patients with cirrhosis, a transcriptome-based OPN correlation network was associated with HCC incidence along 10 years of follow-up, together with messenger RNA (mRNA) signatures of carcinogenesis. After diethylnitrosamine (DEN) injection, mice with conditional overexpression of Opn in hepatocytes (OpnHep transgenic [Tg]) showed increased tumor burden. Surprisingly, mice with conditional ablation of Opn in hepatocytes (OpnΔHep ) expressed a similar phenotype. The acute response to DEN was reduced in OpnΔHep , which also showed more cancer stem/progenitor cells (CSCs, CD44+ AFP+ ) at 5 months. CSCs from OpnHep Tg mice expressed several mRNA signatures known to promote carcinogenesis, and mRNA signatures from OpnHep Tg mice were associated with poor outcome in human HCC patients. Treatment with rOPN had little effect on CSCs, and their progression to HCC was similar in Opn-/- compared with wild-type mice. Finally, ablation of Cd44, an OPN receptor, did not reduce tumor burden in Cd44-/- OpnHep Tg mice. Conclusions: Hepatocyte-derived OPN acts as a tumor suppressor at physiological levels by controlling the acute response to DEN and the presence of CSCs, while induction of OPN is pro-tumorigenic. This is primarily due to intracellular events rather that by the secretion of the protein and receptor activation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Hepatocitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Ratones , Osteopontina/genética
17.
Hepatol Commun ; 6(1): 133-160, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34558855

RESUMEN

Alcohol-associated liver disease (ALD) is a significant clinical problem for which the most effective therapy is alcohol abstinence. The two aims of this study were, first, to identify the liver transcriptome, fecal microbiome, and portal serum metabolome at peak injury and during early and late resolution from ALD; and second, to integrate their interactions and understand better the pathogenesis of ALD. To provoke alcohol-induced liver injury, female and male wild-type mice were fed the control or ethanol Lieber-DeCarli diets for 6 weeks. To study early and late resolution, alcohol was withdrawn from the diet and mice were sacrificed after 3 and 14 days, respectively. At peak injury, there was increased signal transducer and activator of transcription (Stat3), Rho-GTPases, Tec kinase and glycoprotein VI (Gp6), and decreased peroxisome proliferator-activated receptor signaling. During resolution from ALD, there was up-regulation of vitamin D receptor/retinoid X receptor, toll-like receptor, p38 and Stat3, and down-regulation of liver X receptor signaling. Females showed significant changes in catabolic pathways, whereas males increased cellular stress, injury, and immune-response pathways that decreased during resolution. The bacterial genus Alistipes and the metabolite dipeptide glycyl-L-leucine increased at peak but decreased during resolution from ALD in both genders. Hepatic induction of mitogen-activated protein kinase (Map3k1) correlated with changes in the microbiome and metabolome at peak but was restored during ALD resolution. Inhibition of MAP3K1 protected from ALD in mice. Conclusion: Alcohol abstinence restores the liver transcriptome, fecal microbiome, and portal serum metabolome in a gender-specific manner. Integration of multiomics data identified Map3k1 as a key gene driving pathogenesis and resolution from ALD.


Asunto(s)
Hepatopatías Alcohólicas/genética , Hepatopatías Alcohólicas/metabolismo , Metaboloma , Microbiota , Transcriptoma , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Heces/microbiología , Femenino , Hepatocitos/metabolismo , Hepatopatías Alcohólicas/microbiología , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Masculino , Ratones Endogámicos C57BL , Regulación hacia Arriba
18.
J Nat Prod ; 85(1): 237-247, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34935393

RESUMEN

Baicalein is a flavonoid extracted from the root of Scutellaria baicalensis (Chinese skullcap) and is consumed as part of this botanical dietary supplement to reduce oxidative stress, pain, and inflammation. We previously reported that baicalein can also modify receptor signaling through the progesterone receptor (PR) and glucocorticoid receptor (GR) in vitro, which is interesting due to the well-established roles of both PR and GR in reducing inflammation. To understand the effects of baicalein on PR and GR signaling in vivo in the uterus, ovariectomized CD-1 mice were treated with DMSO, progesterone (P4), baicalein, P4 with baicalein, and P4 with RU486, a PR antagonist, for a week. The uteri were collected for histology and RNA sequencing. Our results showed that baicalein attenuated the antiproliferative effect of P4 on luminal epithelium as well as on the PR target genes HAND2 and ZBTB16. Baicalein did not change levels of PR or GR RNA or protein in the uterus. RNA sequencing data indicated that many transcripts significantly altered by baicalein were regulated in the opposite direction by P4. Similarly, a large portion of GO/KEGG terms and GSEA gene sets were altered in the opposite direction by baicalein as compared to P4 treatment. Treatment of baicalein did not change body weight, organ weight, or blood glucose level. In summary, baicalein functioned as a PR antagonist in vivo and therefore may oppose P4 action under certain conditions such as uterine hyperplasia, fibroids, and uterine cancers.


Asunto(s)
Flavanonas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Progesterona/metabolismo , Receptores de Progesterona/genética , Útero/efectos de los fármacos , Animales , Femenino , Ratones , Ovariectomía , Receptores de Glucocorticoides/efectos de los fármacos , Receptores de Progesterona/antagonistas & inhibidores , Análisis de Secuencia de ARN/métodos , Útero/metabolismo
19.
J Nat Prod ; 84(12): 3090-3099, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34813298

RESUMEN

Trifolium pratense L. (red clover) is a popular botanical supplement used for women's health. Irilone isolated from red clover previously demonstrated progestogenic potentiation activity. In this study, irilone enhanced progesterone signaling was determined to not occur due to post-translational phosphorylation or by reducing progesterone receptor (PR) protein levels but instead increased PR protein levels in T47D breast cancer cells, which could be blocked by estrogen receptor (ER) antagonists, suggesting an ER dependent effect. Further, irilone increased luciferase activity from a hormone responsive element in a cell line that lacked ER and PR but expressed the glucocorticoid receptor (GR). A siRNA knockdown of GR in Ishikawa PR-B endometrial cancer cells reduced irilone's ability to enhance progesterone signaling. In an ovariectomized CD-1 mouse model, irilone did not induce uterine epithelial cell proliferation. The mechanism of action of irilone gives insight into PR crosstalk with other steroid hormone receptors, which can be important for understanding botanicals that are used for women's health.


Asunto(s)
Isoflavonas/farmacología , Progesterona/química , Receptores de Estrógenos/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Progesterona/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Trifolium/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Isoflavonas/química , Fosforilación , Procesamiento Proteico-Postraduccional , Receptores de Progesterona/metabolismo
20.
Cell Death Dis ; 12(4): 375, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33828085

RESUMEN

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy that is primarily detected at the metastatic stage. Most HGSOC originates from the fallopian tube epithelium (FTE) and metastasizes to the ovary before invading the peritoneum; therefore, it is crucial to study disease initiation and progression using FTE-derived models. We previously demonstrated that loss of PTEN from the FTE leads to ovarian cancer. In the present study, loss of PTEN in FTE led to the enrichment of cancer stem cell markers such as LGR5, WNT4, ALDH1, CD44. Interestingly, loss of the transcription factor PAX2, which is a common and early alteration in HGSOC, played a pivotal role in the expression of cancer stem-like cells (CSC) markers and cell function. In addition, loss of PTEN led to the generation of two distinct subpopulations of cells with different CSC marker expression, tumorigenicity, and chemoresistance profiles. Taken together, these data suggest that loss of PTEN induces reprogramming of the FTE cells into a more stem-like phenotype due to loss of PAX2 and provides a model to study early events during the FTE-driven ovarian cancer tumor formation.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinogénesis/genética , Carcinoma Epitelial de Ovario/genética , Trompas Uterinas/fisiopatología , Células Madre Neoplásicas/metabolismo , Factor de Transcripción PAX2/metabolismo , Fosfohidrolasa PTEN/metabolismo , Femenino , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA