Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 363: 142941, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39067819

RESUMEN

Within the new circular economy paradigm, this work evaluates the performance of tailored mixed metal oxides (MMO) anodes, based on ruthenium and antimony, for their application into an electrochemically-assisted organic refinery process. This process is designed to transform pollutants into value-added products with minimal mineralization. Oxidation of synthetic wastes consisting of phenol solutions was used to validate the electrochemical conversion of phenolic wastes into carboxylates, which are then considered as bricks to be used for electrosynthesis or to produce fuels. The MMO anodes were manufactured using two synthesis routes (Pechini method and ionic liquid method), each followed by one of three different heating treatments: furnace, microwave, and CO2 laser. The selection of the optimal electrode for the organic electrorefinery was based on a combination of physical and electrochemical properties, degradation performance of phenol to carboxylates, and long-term stability, looking for a truly sustainable solution. Results indicate that anodes synthesized by the ionic liquid (IL) method, regardless of the heating treatment, demonstrated superior performance, with larger active areas (with furnace 82 mC cm-2, microwave 97 mC cm-2, and laser 127 mC cm-2) and higher phenol degradation rates, resulting in a greater generation of carboxylates during electrolysis, yielding primarily oxalate and achieving up to 40% conversion with furnace heating. However, laser-treated anodes exhibited greater stability than furnace-made ones, attributed to the formation of an insulating TiO2 layer. Although the electrode with the longest service life did not show the best catalytic properties for minimizing mineralization, the observed variations in coatings with identical chemical compositions highlight the importance of this research. This study positions itself at the forefront of developing more efficient and sustainable electrochemical technologies for organic waste treatment.


Asunto(s)
Ácidos Carboxílicos , Electrodos , Óxidos , Óxidos/química , Ácidos Carboxílicos/química , Oxidación-Reducción , Rutenio/química , Electrólisis , Antimonio/química , Técnicas Electroquímicas/métodos , Líquidos Iónicos/química , Catálisis
2.
Chemosphere ; 361: 142515, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830460

RESUMEN

The catalytic performance of modified hydroxyapatite nanoparticles, Ca10-xFex-yWy(PO4)6(OH)2, was applied for the degradation of methylene blue (MB), fast green FCF (FG) and norfloxacin (NOR). XPS analysis pointed to the successful partial replacement of Ca by Fe. Under photo-electro-Fenton process, the catalyst Ca4FeII1·92W0·08FeIII4(PO4)6(OH)2 was combined with UVC radiation and electrogenerated H2O2 in a Printex L6 carbon-based gas diffusion electrode. The application of only 10 mA cm-2 resulted in 100% discoloration of MB and FG dyes in 50 min of treatment at pH 2.5, 7.0 and 9.0. The proposed treatment mechanism yielded maximum TOC removal of ∼80% and high mineralization current efficiency of ∼64%. Complete degradation of NOR was obtained in 40 min, and high mineralization of ∼86% was recorded after 240 min of treatment. Responses obtained from LC-ESI-MS/MS are in line with the theoretical Fukui indices and the ECOSAR data. The study enabled us to predict the main degradation route and the acute and chronic toxicity of the by-products formed during the contaminants degradation.


Asunto(s)
Electrodos , Peróxido de Hidrógeno , Hierro , Azul de Metileno , Nanopartículas , Contaminantes Químicos del Agua , Catálisis , Peróxido de Hidrógeno/química , Hierro/química , Azul de Metileno/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Norfloxacino/química , Durapatita/química , Colorantes/química , Procesos Fotoquímicos , Rayos Ultravioleta
3.
Nanoscale Horiz ; 9(8): 1250-1261, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38847073

RESUMEN

On-demand electrocatalytic hydrogen peroxide (H2O2) production is a significant technological advancement that offers a promising alternative to the traditional anthraquinone process. This approach leverages electrocatalysts for the selective reduction of oxygen through a two-electron transfer mechanism (ORR-2e-), holding great promise for delivering a sustainable and economically efficient means of H2O2 production. However, the harsh operating conditions during the electrochemical H2O2 production lead to the degradation of both structural integrity and catalytic efficacy in these materials. Here, we systematically examine the design strategies and materials typically utilized in the electroproduction of H2O2 in acidic environments. We delve into the prevalent reactor conditions and scrutinize the factors contributing to catalyst deactivation. Additionally, we propose standardised benchmarking protocols aimed at evaluating catalyst stability under such rigorous conditions. To this end, we advocate for the adoption of three distinct accelerated stress tests to comprehensively assess catalyst performance and durability.

4.
Environ Technol Innov ; 34: 103563, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38706941

RESUMEN

The practical application of electrochemical oxidation technology for the removal of surfactants from greywater was evaluated using sodium dodecyl sulfate (SDS) as a model surfactant. Careful selection of electrocatalysts and optimization of operational parameters demonstrated effective SDS removal in treating a complex greywater matrix with energy consumption below 1 kWh g-1 COD (Chemical Oxygen Demand), paving the way for a more sustainable approach to achieving surfactant removal in greywater treatment when aiming for decentralized water reuse. Chromatographic techniques identified carboxylic acids as key byproducts prior to complete mineralization. These innovative approaches represent a novel pathway for harnessing electrochemical technologies within decentralized compact devices, offering a promising avenue for further advancements in this field.

5.
Nanomaterials (Basel) ; 14(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38668187

RESUMEN

This study focuses on the synthesis of mixed metal oxide anodes (MMOs) with the composition Ti/RuO2Sb2O4Ptx (where x = 0, 5, 10 mol) using hybrid microwave irradiation heating. The synthesized electrodes were characterized using scanning electron microscopy, X-ray energy-dispersive analysis, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. These electrodes were then evaluated in both bulk electrolytic and fuel cell tests within a reversible chloralkaline electrochemical cell. The configurations using the electrodes Ti/(RuO2)0.7-(Sb2O4)0.3 and Ti/(RuO2)66.5-(Sb2O4)28.5-Pt5 presented lower onset potential for oxygen and chlorine evolution reactions and reduced resistance to charge transfer compared to the Ti/(RuO2)63-(Sb2O4)27-Pt10 variant. These electrodes demonstrated notable performance in reversible electrochemical cells, achieving Coulombic efficiencies of up to 60% when operating in the electrolytic mode at current densities of 150 mA cm-2. They also reached maximum power densities of 1.2 mW cm-2 in the fuel cell. In both scenarios, the presence of platinum in the MMO coating positively influenced the process. Furthermore, a significant challenge encountered was crossover through the membranes, primarily associated with gaseous Cl2. This study advances our understanding of reversible electrochemical cells and presents possibilities for further exploration and refinement. It demonstrated that the synergy of innovative electrode synthesis strategies and electrochemical engineering can lead to promising and sustainable technologies for energy conversion.

6.
Chemosphere ; 352: 141456, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367878

RESUMEN

Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Carbono , Peróxido de Hidrógeno , Electrodos , Oxidación-Reducción , Oxígeno , Antraquinonas
7.
Small ; 20(3): e2304547, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37621039

RESUMEN

The electrogeneration of hydrogen peroxide (H2 O2 ) via the oxygen reduction reaction is a crucial process for advanced water treatment technologies. While significant effort is being devoted to developing highly reactive materials, gas provision systems used in these processes are receiving less attention. Here, using oxygen nanobubbles to improve the gas efficiency of the electrogeneration of H2 O2 is proposed. Aeration with nanobubbles is compared to aeration with macrobubbles under an identical experimental set-up, with nanobubbles showing a much higher gas-liquid volumetric mass transfer coefficient (KL a) of 2.6 × 10-2 min-1 compared to 2.7 × 10-4 min-1 for macrobubbles. Consequently, nanobubbles exhibit a much higher gas efficiency using 60% of O2 delivered to the system compared to 0.19% for macrobubbles. Further, it is observed that the electrogeneration of H2 O2 using carbon felt electrodes is enhanced using nanobubbles. Under the same dissolved oxygen levels, nanobubbles boost the reaction yield to 84%, while macrobubbles yield only 53.8%. To the authors' knowledge, this is the first study to investigate the use of nanobubbles in electrochemical reactions and demonstrate their ability to enhance gas efficiency and electrocatalytic response. These findings have important implications for developing more efficient chemical and electrochemical processes operating under gas-starving systems.

8.
Nanomaterials (Basel) ; 13(21)2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37947677

RESUMEN

In this study, we created a series of N, S, and P-doped and co-doped carbon catalysts using a single graphene nanoribbon (GNR) matrix and thoroughly evaluated the impact of doping on ORR activity and selectivity in acidic, neutral, and alkaline conditions. The results obtained showed no significant changes in the GNR structure after the doping process, though changes were observed in the surface chemistry in view of the heteroatom insertion and oxygen depletion. Of all the dopants investigated, nitrogen (mainly in the form of pyrrolic-N and graphitic-N) was the most easily inserted and detected in the carbon matrix. The electrochemical analyses conducted showed that doping impacted the performance of the catalyst in ORR through changes in the chemical composition of the catalyst, as well as in the double-layer capacitance and electrochemically accessible surface area. In terms of selectivity, GNR doped with phosphorus and sulfur favored the 2e- ORR pathway, while nitrogen favored the 4e- ORR pathway. These findings can provide useful insights into the design of more efficient and versatile catalytic materials for ORR in different electrolyte solutions, based on functionalized carbon.

9.
J Environ Manage ; 348: 119298, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839202

RESUMEN

Pharmaceuticals excreted after administration can pollute water sources given their ineffective removal in conventional wastewater treatment plant. Among the techniques used during tertiary wastewater treatment, adsorption is an effective and cost-efficient method for removing antibiotics. This study aimed to investigate the adsorption of ciprofloxacin (CIP) on metal-doped granular activated carbon (GAC) and evaluate the impact of urine on CIP adsorption for pristine, pre-oxidized, and metal-doped GAC. The results showed that the uptake of CIP by iron (Fe)-doped GAC was higher than Ag-doped, pre-oxidized, and pristine GAC in single-solute isotherms (DI water). This higher uptake was attributed to the presence of Fe content (1.2%) on the carbon surface, which can strongly interact with zwitterionic CIP at a neutral pH. However, when synthetic human urine was introduced, the adsorption of CIP was negatively affected due to pore blockage and competition for available sorption sites on the GAC. Among the four types of GACs tested, the lowest reduction in CIP uptake in the urine solution was observed for Fe-doped GAC followed (%17) by pre-oxidized (64%), Ag-doped (%69), and pristine F400 (76%) carbon. These results suggested that the complexation between CIP and Fe-doped GAC in urine was stronger due to its higher functionalization compared to Ag-doped, pre-oxidized, and pristine GAC. As the equilibrium concentration of CIP increased, the competition between CIP and urine decreased on the surface of Fe-doped carbon, owing to the limited competition from urine for the available active sorption sites.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Ciprofloxacina/química , Adsorción , Metales/química , Antibacterianos/química , Agua , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
10.
Chemosphere ; 342: 140079, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37709061

RESUMEN

The current literature lacks a comprehensive discussion on the trade-off between pollutant degradation/mineralization and treatment time costs in utilizing UV light in combination with H2O2-based electrochemical advanced oxidation processes (EAOPs). The present study sheds light on the benefits of using the photoelectro-Fenton (PEF) process with UVA or UVC for methylparaben (MetP) degradation in real drinking water. Although light boosts the photodegradation of refractory Fe(III) complexes and the photolysis of H2O2 (with UVC only), the energy-intensive nature of light-based treatments is acknowledged. To help tackle the high energy consumption issue, a novel approach was employed: partial application of UVA or UVC light after a predetermined electro-Fenton electrolysis time. The proposed treatment approach yielded satisfactory comparable results to those obtained from the application of PEF/UVA or PEF/UVC in terms of total organic carbon removal (ca. 100%), with notably lower energy consumption (ca. 50%). The study delves into the combined method's feasibility, analyzing pollutant degradation/mineralization process and overall energy consumption. The research identifies possible degradation routes based on intermediate detection and radical quenching experiments. Finally, toxicological assessments evaluate the toxicity levels of MetP and its intermediates. The findings of this study bring meaningful contributions to the fore and point to the highly promising potential of the proposed approach, in terms of sustainability and cost-effectiveness, when applied for decentralized water treatment.


Asunto(s)
Rayos Ultravioleta , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Hierro/química , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Electrodos
11.
Sci Total Environ ; 878: 163047, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-36958544

RESUMEN

As well established in the literature, residual toxicity is an important parameter for evaluating the sanitary and environmental safety of water treatment processes, and this parameter becomes even more crucial when chlorine-based processes are applied for water treatment. Eliminating initial toxicity or preventing its increase after water treatment remains a huge challenge mainly due to the formation of highly toxic disinfection by-products (DBPs) that stem from the degradation of organic contaminants or the interaction of the chlorine-based oxidants with different matrix components. In this review, we present a comprehensive discussion regarding the toxicological aspects of water treated using chlorine-based advanced oxidation processes (AOPs) and the recent findings related to the factors influencing toxicity, and provide directions for future research in the area. The review begins by shedding light on the advances made in the application of free chlorine AOPs and the findings from studies conducted using electrochemical technologies based on free chlorine generation. We then delve into the insights and contributions brought to the fore regarding the application of NH2Cl- and ClO2-based treatment processes. Finally, we broaden our discussion by evaluating the toxicological assays and predictive models employed in the study of residual toxicity and provide an overview of the findings reported to date on this subject matter, while giving useful insights and directions for future research on the topic.

12.
Molecules ; 27(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36364456

RESUMEN

Graphene-based materials have attracted considerable attention as promising electrocatalysts for the oxygen reduction reaction (ORR) and as electrode materials for supercapacitors. In this work, electrochemical exfoliation of graphite in the presence of 4-aminebenzoic acid (4-ABA) is used as a one-step method to prepare graphene oxide materials (EGO) functionalized with aminobenzoic acid (EGO-ABA). The EGO and EGO-ABAs materials were characterized by FT-IR spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction and scanning electron microscopy. It was found that the EGO-ABA materials have smaller flake size and higher density of oxygenated functional groups compared to bare EGO. The electrochemical studies showed that the EGO-ABA catalysts have higher activity for the ORR to H2O2 in alkaline medium compared to EGO due to their higher density of oxygenated functional groups. However, bare EGO has a higher selectivity for the 2-electron process (81%) compared to the EGO-ABA (between 64 and 72%) which was related to a lower content of carbonyl groups. The specific capacitance of the EGO-ABA materials was higher than that of EGO, with an increase by a factor of 3 for the materials prepared from exfoliation in 5 mM 4-ABA/0.1 M H2SO4. This electrode material also showed a remarkable cycling capability with a loss of only 19.4% after 5000 cycles at 50 mVs-1.


Asunto(s)
Grafito , Grafito/química , Peróxido de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Ácido 4-Aminobenzoico , Oxígeno
13.
Chemosphere ; 307(Pt 3): 135763, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35952792

RESUMEN

In recent years, there has been an increasingly growing interest regarding the use of electrochemical advanced oxidation processes (EAOPs) which are considered highly promising alternative treatment techniques for addressing environmental issues related to pollutants of emerging concern. In EAOPs, electrogenerated oxidizing agents, such as hydroxyl radical (HO•), can react non-selectively with a wide range of organic compounds, degrading and mineralizing their structures to unharmful molecules like CO2, H2O, and inorganic ions. To this date, a broad spectrum of advanced electrocatalysts have been developed and applied for the treatment of compounds of interest in different matrices, specifically aiming at enhancing the degradation performance. New combined methods have also been employed as alternative treatment techniques targeted at circumventing the major obstacles encountered in Fenton-based processes, such as high costs and energy consumption, which still contribute significantly toward inhibiting the large-scale application of these processes. First, some fundamental aspects of EAOPs will be presented. Further, we will provide an overview of electrode materials which have been recently developed and reported in the literature, highlighting different anode and cathode structures employed in EAOPs, their main advantages and disadvantages, as well as their contribution to the performance of the treatment processes. The influence of operating parameters, such as initial concentrations, pH effect, temperature, supporting electrolyte, and radiation source, on the treatment processes were also studied. Finally, hybrid techniques which have been reported in the literature and critically assess the most recent techniques used for evaluating the degradation efficiency of the treatment processes.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Dióxido de Carbono , Descontaminación , Técnicas Electroquímicas/métodos , Electrodos , Peróxido de Hidrógeno/química , Radical Hidroxilo/química , Oxidantes , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/química
14.
Chemosphere ; 305: 135497, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35764110

RESUMEN

Boron-doped diamond (BDD) electrodes are regarded as the most promising catalytic materials that are highly efficient and suitable for application in advanced electrochemical oxidation processes targeted at the removal of recalcitrant contaminants in different water matrices. Improving the synthesis of these electrodes through the enhancement of their morphology, structure and stability has become the goal of the material scientists. The present work reports the use of an ultranano-diamond electrode with a highly porous structure (B-UNCDWS/TDNT/Ti) for the treatment of water containing carbaryl. The application of the proposed electrode at current density of 75 mA cm-2 led to the complete removal of the pollutant (carbaryl) from the synthetic medium in 30 min of electrolysis with an electric energy per order of 4.01 kWh m-3 order-1. The results obtained from the time-course analysis of the carboxylic acids and nitrogen-based ions present in the solution showed that the concentrations of nitrogen-based ions were within the established maximum levels for human consumption. Under optimal operating conditions, the proposed electrode was successfully employed for the complete removal of carbaryl in real water. Thus, the findings of this study show that the unique, easy-to-prepare BDD-based electrode proposed in this study is a highly efficient tool which has excellent application potential for the removal of recalcitrant pollutants in water.


Asunto(s)
Boro , Contaminantes Químicos del Agua , Boro/química , Carbaril/análisis , Electrodos , Humanos , Nitrógeno/análisis , Oxidación-Reducción , Porosidad , Agua , Contaminantes Químicos del Agua/análisis
15.
ACS Appl Mater Interfaces ; 14(5): 6777-6793, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080174

RESUMEN

Electrocatalytic production of H2O2 via a two-electron oxygen reduction reaction (ORR-2e-) is regarded as a highly promising decentralized and environmentally friendly mechanism for the production of this important chemical commodity. However, the underlying challenges related to the development of catalytic materials that contain zero or low content of noble metals and that are relatively more active, selective, and resistant for long-term use have become a huge obstacle for the electroproduction of H2O2 on commercial and industrial scales. The present study reports the synthesis and characterization of low metal-loaded (≤6.4 wt %) catalysts and their efficiency in H2O2 electroproduction. The catalysts were constructed using gold palladium molybdenum oxide (AuPdMoOx) and palladium molybdenum oxide (PdMoOx) nanoparticles supported on graphene nanoribbons. Based on the application of a rotating ring-disk electrode, we conducted a thorough comparative analysis of the electrocatalytic performance of the catalysts in the ORR under acidic and alkaline media. The proposed catalysts exhibited high catalytic activity (ca. 0.08 mA gnoble metal-1 in an acidic medium and ca. 6.6 mA gnoble metal-1 in an alkaline medium), good selectivity (over 80%), and improved long-term stability toward ORR-2e-. The results obtained showed that the enhanced ORR activity presented by the catalysts, which occurred preferentially via the two-electron pathway, was promoted by a combination of factors including geometry, Pd content, interparticle distance, and site-blocking effects, while the electrochemical stability of the catalysts may have been enhanced by the presence of MoOx.

16.
Environ Res ; 204(Pt A): 112027, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34508772

RESUMEN

The present work investigates the electrocatalytic performance of two different morphologies of boron doped-diamond film electrode (microcrystalline diamond - MCD, and nanocrystalline diamond - NCD) used in electrochemical oxidation for the removal of the antibiotic ciprofloxacin (CIP). A thorough study was conducted regarding the formation of the MCD and NCD films through the adjustment of methane in CH4/H2 gas mixture, and the two films were compared in terms of crystalline structure, apparent doping level, and electrochemical properties. The physicochemical results showed that the NCD film had higher sp2 carbon content and greater doping level; this contributed to improvements in its surface roughness, as well as its specific capacitance and charge transfer, which consequently enhanced its electrocatalytic activity in comparison with the MCD. The results obtained from CIP removal and mineralization assays performed in sulfate medium also showed that the NCD was more efficient than the MCD under all the current densities investigated. The effects of CIP concentration and the evolution of the final by-products, including short-chain carboxylic acids and inorganic ions, were also investigated. The electrochemical performance of the NCD was evaluated in different aqueous matrices, including chloride medium, real wastewater and simulated urine. The application of the NCD led to complete or almost complete CIP degradation, regardless of the medium employed. The kinetic constant rates obtained under the different media investigated were as follows: synthetic urine (0.0416 min-1 - R2 = 0.991) < real wastewater (0.0923 min-1 R2 = 0.997) < synthetic matrix containing chloride (0.1992 min-1 - R2 = 0.995); this shows that the pollutant degradation was affected by the type of aqueous matrix and the oxidants that were electrogenerated in situ. The results obtained from the analysis of electrical energy per order (EE/O) showed that the treatment of simulated urine spkiked with required the highest energy consumption, followed by the real effluent and synthetic matrix containing chloride. The present study proves the viability of electrocatalytic nanostructured materials to the treatment of antibiotics in complex matrices.


Asunto(s)
Diamante , Contaminantes Químicos del Agua , Boro , Ciprofloxacina , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
17.
J Biomol Struct Dyn ; 40(23): 12516-12525, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34463224

RESUMEN

Bis(2-ethylhexyl) phthalate (DEHP) has been widely used for the production of plastics, and the compound has also been found to act as endocrine disruptor. Exposure to DEHP has been found to cause several hormonal problems, including decreased fertility. Due to the environmental and health risks posed by the use of DEHP, the present study employed molecular docking, molecular dynamics, and free energy analyses (MM-GBSA, MM-PBSA, and SIE) aiming at evaluating the action of DEHP and that of two other compounds (ATEC and DL9TH), tested as potential DEHP substitutes, on two hormone receptors (sex hormone-binding globulin - SHBG - and progesterone receptor - PR). The results obtained showed that ATEC may be a good substitute for DEHP in the production of plastics, such as PVC, considering that the compound recorded the greatest free energy values with respect to binding with SHBG (-31.36 kcal/mol obtained from MM-GBSA; -20.28 kcal/mol for MM-PBSA, and -7.40 for SIE) and PR (-36.40 kcal/mol for MM-GBSA; -27.00 kcal/mol for MM-PBSA, and -8.51 kcal/mol for SIE) - this shows that ATEC presented the least activity in the two hormone receptors. The findings of this study provide relevant insights on potential substitutes for DEHP and help shed light on the action of these new efficient substances, which have similar properties to DEHP (ATEC and DL9TH) yet do not act as endocrine disruptors.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Dietilhexil Ftalato/química , Plastificantes/química , Plastificantes/metabolismo , Disruptores Endocrinos/química , Simulación del Acoplamiento Molecular , Plásticos , Hormonas
18.
Chemosphere ; 284: 131303, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34182289

RESUMEN

Here, the antibiotic levofloxacin (LFX) widely used and detected in the environment was degraded by photoelectrolysis using a new electrode based on zinc oxide (ZnO) and a mixture of mixed oxides of ruthenium and titanium (MMO). The influence of the potential and irradiation of UV light was investigated in the photostability of the Ti/MMO/ZnO electrode and in the degradation of the antibiotic. The experiments were conducted at different pH values (5.0, 7.0 and 9.0) in sodium sulfate solution in a glass reactor with central lighting. It was observed that the new Ti/MMO/ZnO electrode has good stability under light irradiation and potential, presenting excellent photocurrent and high photoactivity in LFX photoelectrolysis. The removal efficiency of the compound was directly related to the formation of oxidizing species in solution, the photo-generated charges on the electrode and the electrostatic characteristics of the molecule. The mineralization rate, the formation of reaction intermediates and short chain carboxylic acids (acetic, maleic, oxalic and oxamic acid), in addition to the formation of N-mineral species (NO3- and NH4+) was dependent on the pH of the solution and the investigated processes: photoelectrolysis was more efficient than photolysis, which, in turn, was more efficient than electrolysis. The synergistic effect and the high rate of degradation of LFX after 4.0 h of treatment (100%) observed in photoelectrolysis at alkaline pH, was associated with the high stability of the Ti/MMO/ZnO electrode at this pH, the photoactivation of sulfate ions and the ease generation of oxidizing radicals, such as OH.


Asunto(s)
Contaminantes Químicos del Agua , Óxido de Zinc , Catálisis , Electrodos , Electrólisis , Levofloxacino , Titanio , Contaminantes Químicos del Agua/análisis
19.
Chemosphere ; 271: 129451, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33450425

RESUMEN

In this work, it is proposed a novel strategy to increase the photostability of the ZnO photoelectrocatalyst under prolonged light irradiation, without the addition or deposition of metals and/or semiconductor oxides during their synthesis. This strategy is based on the use of a mixed metal oxide (MMO-Ru0.3Ti0.7O2) coating as the substrate for the electrodeposition of ZnO. To assess it, the electrodeposition of ZnO films on Ti and Ti/MMO substrates and the photoelectrocatalytic activity of these materials for the degradation of the herbicide clopyralid were studied. The results showed that the substrate directly influenced the photo-stability of the ZnO film. Under the incidence of UV light and polarization, the novel Ti/MMO/ZnO electrode showed greater photocurrent stability as compared to Ti/ZnO, which is a very important outcome because the behavior of these electrodes was similar when compared in terms of the degradation of clopyralid. Single electrolysis was not able to degrade efficiently clopyralid at the different potentials studied. However, the irradiation of UV light on the polarized surface of the Ti/ZnO and Ti/MMO/ZnO electrodes increased markedly the degradation rate of clopyralid. A synergistic effect was observed between light and electrode polarization, since the rate of degradation of clopyralid was twice as high in photoelectrocatalysis (PhEC) than in photocatalysis (PhC) and different intermediates were formed. From these results, mechanisms of degradation of clopyralid for the PhC and PhEC systems with the Ti/ZnO and Ti/MMO/ZnO electrodes were presented. Therefore, the Ti/MMO/ZnO electrode could be a cheap and simple alternative to be applied in the efficient photodegradation of organic pollutants, presenting the great advantage of having a facile synthesis and high capacity to work at relatively low potentials.


Asunto(s)
Óxido de Zinc , Electrodos , Electrólisis , Oxidación-Reducción , Óxidos
20.
Chemosphere ; 247: 125807, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31955039

RESUMEN

The present work reports the degradation of the antibiotic ciprofloxacin (CIP) by different advanced oxidative process systems (UV; Anodic Oxidation; H2O2; H2O2/UV; H2O2/Fe2+ and H2O2/UV/Fe2+) in an electrochemical cell using gas diffusion electrode (GDE) for the synthesis of hydrogen peroxide. CIP degradation and mineralization were evaluated by high efficiency liquid chromatography (HPLC) and total organic carbon (TOC) techniques. Of all the systems investigated, the photoelectro-Fenton system presented the best degradation efficiency; this system promoted highly significant mineralization percentages of 54.8% and 84.6% in 90 and 360 min, and relatively lower energy consumption rates of 4110.0 and 9808.2 kWh kg-1 TOC, respectively. In 6 h period of experiment, the main degradation products of ciprofloxacin were identified, and the aliphatic acids obtained helped confirm the rupture of the aromatic ring. The application of the photoelectro-Fenton process with in situ eletroctrogeneration of H2O2 using GDE has proved to be suitably promising for the treatment of organic pollutants.


Asunto(s)
Ciprofloxacina/química , Peróxido de Hidrógeno/química , Hierro/química , Contaminantes Químicos del Agua/química , Antibacterianos/química , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Electrodos , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA