Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 180: 106067, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36893901

RESUMEN

Although Parkinson's disease (PD) key neuropathological hallmarks are well known, the underlying pathogenic mechanisms of the disease still need to be elucidated to identify innovative disease-modifying drugs and specific biomarkers. NF-κB transcription factors are involved in regulating several processes associated with neurodegeneration, such as neuroinflammation and cell death, that could be related to PD pathology. NF-κB/c-Rel deficient (c-rel-/-) mice develop a progressive PD-like phenotype. The c-rel-/- mice present both prodromal and motor symptoms as well as key neuropathological features, including nigrostriatal dopaminergic neurons degeneration, accumulation of pro-apoptotic NF-κB/RelA acetylated at the lysine 310 residue (Ac-RelA(lys310)) and progressive caudo-rostral brain deposition of alpha-synuclein. c-Rel inhibition can exacerbate MPTP-induced neurotoxicity in mice. These findings support the claim that misregulation of c-Rel protein may be implicated in PD pathophysiology. In this study, we aimed at evaluating c-Rel levels and DNA-binding activity in human brains and peripheral blood mononuclear cells (PBMCs) of sporadic PD patients. We analyzed c-Rel protein content and activity in frozen substantia nigra (SN) samples from post-mortem brains of 10 PD patients and 9 age-matched controls as well as in PBMCs from 72 PD patients and 40 age-matched controls. c-Rel DNA-binding was significantly lower and inversely correlated with Ac-RelA(lys310) content in post-mortem SN of sporadic PD cases, when compared to healthy controls. c-Rel DNA-binding activity was also reduced in PBMCs of followed-up PD subjects. The decrease of c-Rel activity in PBMCs from PD patients appeared to be independent from dopaminergic medication or disease progression, as it was evident even in early stage, drug-naïve patients. Remarkably, the levels of c-Rel protein were comparable in PD and control subjects, pointing out a putative role for post-translational modifications of the protein in c-Rel dysfunctions. These findings support that PD is characterized by the loss of NF-κB/c-Rel activity that potentially has a role in PD pathophysiology. Future studies will be aimed at addressing whether the reduction of c-Rel DNA-binding could constitute a novel biomarker for PD.


Asunto(s)
Intoxicación por MPTP , Enfermedad de Parkinson , Humanos , Ratones , Animales , FN-kappa B/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Proto-Oncogénicas c-rel/metabolismo , Leucocitos Mononucleares/metabolismo , Sustancia Negra/metabolismo , Neuronas Dopaminérgicas/metabolismo , Intoxicación por MPTP/patología
2.
Transl Neurodegener ; 8: 16, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31139367

RESUMEN

BACKGROUND: Parkinson's disease (PD), the most common neurodegenerative movement disorder, is characterized by dopaminergic nigrostriatal neuron loss and brain accumulation of Lewy bodies, protein aggregates mainly composed of α-synuclein. We reported that mice deficient for NF-κB/c-Rel (c-rel-/-) develop a late-onset parkinsonism. At 18 months of age, c-rel-/- mice showed nigrostriatal degeneration and accumulation of α-synuclein aggregates associated with a motor impairment responsive to L-DOPA administration. Being c-Rel protein a transcriptional regulator for mitochondrial anti-oxidant and antiapoptotic factors, it has been inferred that its deficiency may affect the resilience of "energy demanding" nigral dopaminergic neurons to the aging process. PD patients manifest a prodromal syndrome that includes olfactory and gastrointestinal dysfunctions years before the frank degeneration of nigrostriatal neurons and appearance of motor symptoms. According to the Braak staging, the onset of non-motor and motor symptoms relates to progressive ascendant diffusion of α-synuclein pathology in the brain. The aim of this study was to identify whether c-rel-/- deficiency is associated with the onset of premotor signs of PD and spatio-temporal progression of cerebral α-synuclein deposition. METHODS: Intestinal and olfactory functions, intestine and brain α-synuclein deposition as well as striatal alterations, were assessed in c-rel-/- and control mice from 2 to 18 months of age. RESULTS: From 2 months of age, c-rel-/- mice displayed intestinal constipation and increasing olfactory impairment. At 2 months, c-rel-/- mice exhibited a mild α-synuclein accumulation in the distal colon. Moreover, they developed an age-dependent deposition of fibrillary α-synuclein that, starting at 5 months from the olfactory bulbs, dorsal motor nucleus of vagus and locus coeruleus, reached the substantia nigra at 12 months. At this age, the α-synuclein pathology associated with a drop of dopamine transporter in the striatum that anticipated by 6 months the axonal degeneration. From 12 months onwards oxidative/nitrosative stress developed in the striatum in parallel with altered expression of mitochondrial homeostasis regulators in the substantia nigra. CONCLUSIONS: In c-rel-/- mice, reproducing a parkinsonian progressive pathology with non-motor and motor symptoms, a Braak-like pattern of brain ascending α-synuclein deposition occurs. The peculiar phenotype of c-rel-/- mice envisages a potential contribution of c-Rel dysregulation to the pathogenesis of PD.

3.
Nutrients ; 11(2)2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30736313

RESUMEN

Bioactive components, due in part to their epigenetic properties, are beneficial for preventing several human diseases including cerebrovascular pathologies. However, no clear demonstration supports the idea that these molecules still conserve their epigenetic effects when acting at very low concentrations reproducing the brain levels achieved after oral administration of a micronutrient supplement. In the present study, we used a cellular model of brain ischemia to investigate the neuroprotective and epigenetic activities of a commercially available micronutrient mixture (polyphenol-enriched micronutrient mixture, PMM) enriched in polyphenols ((-)-epigallocatechin-3-gallate, quercetin, resveratrol), α-lipoic acid, vitamins, amino acids and other micronutrients. Mimicking the suggested dietary supplementation, primary cultures of mouse cortical neurons were pre-treated with PMM and then subjected to oxygen glucose deprivation (OGD). Pre-treatment with PMM amounts to provide bioactive components in the medium in the nanomolar range potently prevented neuronal cell death. The protection was associated with the deacetylation of the lysin 310 (K310) on NF-κB/RelA as well as the deacetylation of H3 histones at the promoter of Bim, a pro-apoptotic target of ac-RelA(K310) in brain ischemia. Epigenetic regulators known to shape the acetylation state of ac-RelA(K310) moiety are the histone acetyl transferase CBP/p300 and the class III histone deacetylase sirtuin-1. In view of that evidence, the protection we here report unveils the efficacy of bioactive components endowed with either inhibitory activity on CBP/p300 or stimulating activity on the AMP-activated protein kinase⁻sirtuin 1 pathway. Our results support a potential synergistic effect of micronutrients in the PMM, suggesting that the intake of a polyphenol-based micronutrient mixture can reduce neuronal vulnerability to stressful conditions at concentrations compatible with the predicted brain levels reached by a single constituent after an oral dose of PMM.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Suplementos Dietéticos , Fármacos Neuroprotectores/farmacología , Polifenoles/farmacología , Acetilación/efectos de los fármacos , Animales , Catequina/análogos & derivados , Catequina/farmacología , Técnicas de Cultivo de Célula , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Quercetina/farmacología , Resveratrol/farmacología , Factor de Transcripción ReIA/metabolismo
4.
Int J Mol Sci ; 19(1)2018 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-29316653

RESUMEN

Histone deacetylation, together with altered acetylation of NF-κB/RelA, encompassing the K310 residue acetylation, occur during brain ischemia. By restoring the normal acetylation condition, we previously reported that sub-threshold doses of resveratrol and entinostat (MS-275), respectively, an activator of the AMP-activated kinase (AMPK)-sirtuin 1 pathway and an inhibitor of class I histone deacetylases (HDACs), synergistically elicited neuroprotection in a mouse model of ischemic stroke. To improve the translational power of this approach, we investigated the efficacy of MS-275 replacement with valproate, the antiepileptic drug also reported to be a class I HDAC blocker. In cortical neurons previously exposed to oxygen glucose deprivation (OGD), valproate elicited neuroprotection at 100 nmol/mL concentration when used alone and at 1 nmol/mL concentration when associated with resveratrol (3 nmol/mL). Resveratrol and valproate restored the acetylation of histone H3 (K9/18), and they reduced the RelA(K310) acetylation and the Bim level in neurons exposed to OGD. Chromatin immunoprecipitation analysis showed that the synergistic drug association impaired the RelA binding to the Bim promoter, as well as the promoter-specific H3 (K9/18) acetylation. In mice subjected to 60 min of middle cerebral artery occlusion (MCAO), the association of resveratrol 680 µg/kg and valproate 200 µg/kg significantly reduced the infarct volume as well as the neurological deficits. The present study suggests that valproate and resveratrol may represent a promising ready-to-use strategy to treat post-ischemic brain damage.


Asunto(s)
Inhibidores de Histona Desacetilasas/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Estilbenos/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Ácido Valproico/uso terapéutico , Acetilación/efectos de los fármacos , Animales , Proteína 11 Similar a Bcl2/genética , Proteína 11 Similar a Bcl2/metabolismo , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Histonas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Resveratrol , Estilbenos/farmacología , Accidente Cerebrovascular/patología , Factor de Transcripción ReIA/metabolismo , Ácido Valproico/farmacología
5.
Int J Mol Sci ; 18(1)2017 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-28106772

RESUMEN

CSP-1103 (formerly CHF5074) has been shown to reverse memory impairment and reduce amyloid plaque as well as inflammatory microglia activation in preclinical models of Alzheimer's disease. Moreover, it was found to improve cognition and reduce brain inflammation in patients with mild cognitive impairment. Recent evidence suggests that CSP-1103 acts through a single molecular target, the amyloid precursor protein intracellular domain (AICD), a transcriptional regulator implicated in inflammation and apoptosis. We here tested the possible anti-apoptotic and neuroprotective activity of CSP-1103 in a cell-based model of post-ischemic injury, wherein the primary mouse cortical neurons were exposed to oxygen-glucose deprivation (OGD). When added after OGD, CSP-1103 prevented the apoptosis cascade by reducing cytochrome c release and caspase-3 activation and the secondary necrosis. Additionally, CSP-1103 limited earlier activation of p38 and nuclear factor κB (NF-κB) pathways. These results demonstrate that CSP-1103 is neuroprotective in a model of post-ischemic brain injury and provide further mechanistic insights as regards its ability to reduce apoptosis and potential production of pro-inflammatory cytokines. In conclusion, these findings suggest a potential use of CSP-1103 for the treatment of brain ischemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Ciclopropanos/farmacología , Flurbiprofeno/análogos & derivados , Glucosa/deficiencia , Neuronas/patología , Fármacos Neuroprotectores/farmacología , Oxígeno/farmacología , Animales , Caspasa 3/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Corteza Cerebral/patología , Citocromos c/metabolismo , Activación Enzimática/efectos de los fármacos , Flurbiprofeno/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ibuprofeno/farmacología , Ratones Endogámicos C57BL , Necrosis , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Factor de Transcripción ReIA/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Brain Res ; 1648(Pt A): 409-417, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27423516

RESUMEN

The combination of palmitoylethanolamide (PEA), an endogenous fatty acid amide belonging to the family of the N-acylethanolamines, and the flavonoid luteolin has been found to exert neuroprotective activities in a variety of mouse models of neurological disorders, including brain ischemia. Indirect findings suggest that the two molecules can reduce the activation of mastocytes in brain ischemia, thus modulating crucial cells that trigger the inflammatory cascade. Though, no evidence exists about a direct effect of PEA and luteolin on mast cells in experimental models of brain ischemia, either used separately or in combination. In order to fill this gap, we developed a novel cell-based model of severe brain ischemia consisting of primary mouse cortical neurons and cloned mast cells derived from mouse fetal liver (MC/9 cells) subjected to oxygen and glucose deprivation (OGD). OGD exposure promoted both mast cell degranulation and the release of lactate dehydrogenase (LDH) in a time-dependent fashion. MC/9 cells exacerbated neuronal damage in neuron-mast cells co-cultures exposed to OGD. Likewise, the conditioned medium derived from OGD-exposed MC/9 cells induced significant neurotoxicity in control primary neurons. PEA and luteolin pre-treatment synergistically prevented the OGD-induced degranulation of mast cells and reduced the neurotoxic potential of MC/9 cells conditioned medium. Finally, the association of the two drugs promoted a direct synergistic neuroprotection even in pure cortical neurons exposed to OGD. In summary, our results indicate that mast cells release neurotoxic factors upon OGD-induced activation. The association PEA-luteolin actively reduces mast cell-mediated neurotoxicity as well as pure neurons susceptibility to OGD.


Asunto(s)
Isquemia Encefálica/prevención & control , Etanolaminas/farmacología , Luteolina/farmacología , Mastocitos/efectos de los fármacos , Mastocitos/fisiología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ácidos Palmíticos/farmacología , Amidas , Animales , Degranulación de la Célula , Células Cultivadas , Técnicas de Cocultivo , Etanolaminas/administración & dosificación , Glucosa/metabolismo , L-Lactato Deshidrogenasa/metabolismo , Luteolina/administración & dosificación , Mastocitos/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Oxígeno/metabolismo , Ácidos Palmíticos/administración & dosificación
7.
Front Neurol ; 6: 98, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26042083

RESUMEN

NF-κB factors are cardinal transcriptional regulators of inflammation and apoptosis, involved in the brain programing of systemic aging and in brain damage. The composition of NF-κB active dimers and epigenetic mechanisms modulating histone acetylation, finely condition neuronal resilience to brain insults. In stroke models, the activation of NF-κB/c-Rel promotes neuroprotective effects by transcription of specific anti-apoptotic genes. Conversely, aberrant activation of NF-κB/RelA showing reduced level of total acetylation, but site-specific acetylation on lysine 310, triggers the expression of pro-apoptotic genes. Constitutive knockout of c-Rel shatters the resilience of substantia nigra (SN) dopaminergic (DA) neurons to aging and induces a parkinsonian like pathology in mice. c-rel(-/-) mice show increased level of aberrantly acetylated RelA in the basal ganglia, neuroinflammation, accumulation of alpha-synuclein, and iron. Moreover, they develop motor deficits responsive to l-DOPA treatment and associated with loss of DA neurons in the SN. Here, we discuss the effect of unbalanced activation of RelA and c-Rel during aging and propose novel challenges for the development of therapeutic strategies in neurodegenerative diseases.

8.
Sci Rep ; 4: 4618, 2014 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-24714650

RESUMEN

Amyloid precursor protein (APP) intracellular domain (AICD) is a product of APP processing with transcriptional modulation activity, whose overexpression causes various Alzheimer's disease (AD)-related dysfunctions. Here we report that 1-(3',4'-dichloro-2-fluoro[1,1'-biphenyl]-4-yl)-cyclopropanecarboxylic acid) (CHF5074), a compound that favorably affects neurodegeneration, neuroinflammation and memory deficit in transgenic mouse models of AD, interacts with the AICD and impairs its nuclear activity. In neuroglioma-APPswe cells, CHF5074 shifted APP cleavage from Aß42 to the less toxic Aß38 peptide without affecting APP-C-terminal fragment, nor APP levels. As revealed by photoaffinity labeling, CHF5074 does not interact with γ-secretase, but binds to the AICD and lowers its nuclear translocation. In vivo treatment with CHF5074 reduced AICD occupancy as well as histone H3 acetylation levels and transcriptional output of the AICD-target gene KAI1. The data provide new mechanistic insights on this compound, which is under clinical investigation for AD treatment/prevention, as well as on the contribution of the AICD to AD pathology.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ciclopropanos/farmacología , Flurbiprofeno/análogos & derivados , Fragmentos de Péptidos/metabolismo , Acetilación , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Línea Celular Tumoral , Flurbiprofeno/farmacología , Histonas/metabolismo , Humanos , Proteína Kangai-1/biosíntesis , Proteína Kangai-1/genética , Estructura Terciaria de Proteína , Transcripción Genética
9.
Neurobiol Dis ; 49: 177-89, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22971966

RESUMEN

UNLABELLED: Nuclear factor-kappaB (NF-κB) p50/RelA is a key molecule with a dual effect in the progression of ischemic stroke. In harmful ischemia, but not in preconditioning insult, neurotoxic activation of p50/RelA is characterized by RelA-specific acetylation at Lys310 (K310) and deacetylation at other Lys residues. The derangement of RelA acetylation is associated with activation of Bim promoter. OBJECTIVE: With the aim of producing neuroprotection by correcting altered acetylation of RelA in brain ischemia, we combined the pharmacological inhibition of histone deacetylase (HDAC) 1-3, the enzymes known to reduce global RelA acetylation, and the activation of sirtuin 1, endowed with a specific deacetylase activity on the K310 residue of RelA. To afford this aim, we tested the clinically used HDAC 1-3 inhibitor entinostat (MS-275) and the sirtuin 1 activator resveratrol. METHODS: We used the mouse model of transient middle cerebral artery occlusion (MCAO) and primary cortical neurons exposed to oxygen glucose deprivation (OGD). RESULTS: The combined use of MS-275 and resveratrol, by restoring normal RelA acetylation, elicited a synergistic neuroprotection in neurons exposed to OGD. This effect correlated with MS-275 capability to increase total RelA acetylation and resveratrol capability to reduce RelA K310 acetylation through the activation of an AMP-activated protein kinase-sirtuin 1 pathway. The synergistic treatment reproduced the acetylation state of RelA peculiar of preconditioning ischemia. Neurons exposed to the combined drugs totally recovered the optimal histone H3 acetylation. Neuroprotection was reproduced in mice subjected to MCAO and treated with MS-275 (20µg/kg and 200µg/kg) or resveratrol (6800µg/kg) individually. However, the administration of lowest doses of MS-275 (2µg/kg) and resveratrol (68µg/kg) synergistically reduced infarct volume and neurological deficits. Importantly, the treatment was effective even when administered 7h after the stroke onset. Chromatin immunoprecipitation analysis of cortices harvested from treated mice showed that the RelA binding and histone acetylation increased at the Bcl-xL promoter and decreased at the Bim promoter. CONCLUSION: Our study reveals that epigenetic therapy shaping acetylation of both RelA and histones may be a promising strategy to limit post-ischemic injury with an extended therapeutic window.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Epigénesis Genética/efectos de los fármacos , Histonas/metabolismo , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Factor de Transcripción ReIA/metabolismo , Acetilación/efectos de los fármacos , Animales , Benzamidas/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Modelos Animales de Enfermedad , Epigénesis Genética/fisiología , Glucosa/deficiencia , Inhibidores de Histona Desacetilasas/farmacología , Infarto de la Arteria Cerebral Media , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Piridinas/farmacología , Resveratrol , Sirtuina 1/metabolismo , Estilbenos/farmacología
10.
PLoS One ; 7(5): e38019, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22666436

RESUMEN

The molecular mechanisms responsible for increasing iron and neurodegeneration in brain ischemia are an interesting area of research which could open new therapeutic approaches. Previous evidence has shown that activation of nuclear factor kappa B (NF-κB) through RelA acetylation on Lys310 is the prerequisite for p50/RelA-mediated apoptosis in cellular and animal models of brain ischemia. We hypothesized that the increase of iron through a NF-κB-regulated 1B isoform of the divalent metal transporter-1 (1B/DMT1) might contribute to post-ischemic neuronal damage. Both in mice subjected to transient middle cerebral artery occlusion (MCAO) and in neuronally differentiated SK-N-SH cells exposed to oxygen-glucose-deprivation (OGD), 1A/DMT1 was only barely expressed while the 1B/DMT1 without iron-response-element (-IRE) protein and mRNA were early up-regulated. Either OGD or over-expression of 1B/(-)IRE DMT1 isoform significantly increased iron uptake, as detected by total reflection X-ray fluorescence, and iron-dependent cell death. Iron chelation by deferoxamine treatment or (-)IRE DMT1 RNA silencing displayed significant neuroprotection against OGD which concomitantly decreased intracellular iron levels. We found evidence that 1B/(-)IRE DMT1 was a target gene for RelA activation and acetylation on Lys310 residue during ischemia. Chromatin immunoprecipitation analysis of the 1B/DMT1 promoter showed there was increased interaction with RelA and acetylation of H3 histone during OGD exposure of cortical neurons. Over-expression of wild-type RelA increased 1B/DMT1 promoter-luciferase activity, the (-)IRE DMT1 protein, as well as neuronal death. Expression of the acetylation-resistant RelA-K310R construct, which carried a mutation from lysine 310 to arginine, but not the acetyl-mimic mutant RelA-K310Q, down-regulated the 1B/DMT1 promoter, consequently offering neuroprotection. Our data showed that 1B/(-)IRE DMT1 expression and intracellular iron influx are early downstream responses to NF-κB/RelA activation and acetylation during brain ischemia and contribute to the pathogenesis of stroke-induced neuronal damage.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Proteínas de Transporte de Catión/metabolismo , Regulación de la Expresión Génica , Lisina , Factor de Transcripción ReIA/química , Factor de Transcripción ReIA/metabolismo , Acetilación , Animales , Transporte Biológico , Isquemia Encefálica/genética , Proteínas de Transporte de Catión/genética , Muerte Celular , Línea Celular Tumoral , Glucosa/deficiencia , Histonas/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Espacio Intracelular/metabolismo , Hierro/metabolismo , Masculino , Ratones , Neuronas/patología , Oxígeno/metabolismo , Regiones Promotoras Genéticas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Activación Transcripcional , Regulación hacia Arriba
11.
Brain Res ; 1476: 203-10, 2012 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-22575713

RESUMEN

Brain cells display an amazing ability to respond to several different types of environmental stimuli and integrate this response physiologically. Some of these responses can outlive the original stimulus by days, weeks or even longer. Long-lasting changes in both physiological and pathological conditions occurring in response to external stimuli are almost always mediated by changes in gene expression. To effect these changes, cells have developed an impressive repertoire of signaling systems designed to modulate the activity of numerous transcription factors and epigenetic mechanisms affecting the chromatin structure. Since its initial characterization in the nervous system, NF-κB has shown to respond to multiple signals and elicit pleiotropic activities suggesting that it may play a pivotal role in integration of different types of information within the brain. Ample evidence demonstrates that NF-κB factors are engaged in and necessary for neuronal development and synaptic plasticity, but they also regulate brain response to environmental noxae. By focusing on the complexity of NF-κB transcriptional activity in neuronal cell death, it emerged that the composition of NF-κB active dimers finely tunes the neuronal vulnerability to brain ischemia. Even though we are only beginning to understand the contribution of distinct NF-κB family members to the regulation of gene transcription in the brain, an additional level of regulation of NF-κB activity has emerged as operated by the epigenetic mechanisms modulating histone acetylation. We will discuss NF-κB and epigenetic mechanisms as integrative regulators of brain resilience to anoxic stress and useful drug targets for restoration of brain function. This article is part of a Special Issue entitled: Brain Integration.


Asunto(s)
Isquemia Encefálica/patología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Epigénesis Genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Animales , Encéfalo/patología , Humanos , Modelos Biológicos , Neuronas/metabolismo
12.
J Alzheimers Dis ; 24(4): 799-816, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21321397

RESUMEN

Abnormal amyloid-ß (Aß) production and deposition is believed to represent one of the main causes of Alzheimer's disease (AD). γ-Secretase is the enzymatic complex responsible for Aß generation from its precursor protein. Inhibition or modulation of γ-secretase represents an attractive therapeutic approach. CHF5074 is a new γ-secretase modulator that has been shown to inhibit brain plaque deposition and to attenuate memory deficit in adult AD transgenic mice after chronic treatment. To date, it is not known whether the positive behavioral effects of this compound also occur in young transgenic mice without plaque deposition. Here, we evaluated the effects of acute and subchronic treatment with CHF5074 on contextual and recognition memory and on hippocampal synaptic plasticity in plaque-free Tg2576 mice. We found that at 5 months of age, contextual memory impairment was significantly attenuated after acute subcutaneous administration of 30 mg/kg CHF5074. At 6 months of age, recognition memory impairment was fully reversed after a 4-week oral treatment in the diet (≈60 mg/kg/day). These cognitive effects were associated with a reversal of long-term potentiation (LTP) impairment in the hippocampus. A significant reduction in brain intraneuronal AßPP/Aß levels and hyperphosphorylated tau, but no change in soluble or oligomeric Aß levels was detected in Tg2576 mice showing functional recovery following CHF5074 treatment. We conclude that the beneficial effects of CHF5074 treatment in young transgenic mice occurred at a stage that precedes plaque formation and were associated with a reduction in intraneuronal AßPP/Aß and hyperphosphorylated tau.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Ciclopropanos/farmacología , Flurbiprofeno/análogos & derivados , Hipocampo/enzimología , Trastornos de la Memoria/enzimología , Memoria/fisiología , Sinapsis/enzimología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Cricetinae , Ciclopropanos/uso terapéutico , Femenino , Flurbiprofeno/farmacología , Flurbiprofeno/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Humanos , Memoria/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico , Trastornos de la Memoria/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Placa Amiloide , Sinapsis/efectos de los fármacos , Sinapsis/genética
13.
J Mol Neurosci ; 45(1): 22-31, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21181298

RESUMEN

The relationship between ß-amyloid (Aß) and tau is not fully understood, though it is proposed that in the pathogenesis of Alzheimer's disease (AD) Aß accumulation precedes and promotes tau hyperphosphorylation via activation of glycogen synthase kinase-3beta (GSK-3ß). Both events contribute to learning and memory impairments. Modulation of γ-secretase activity has proved to reduce the Aß burden and cognitive deficits in mouse models of AD, but its ability in reducing the tau pathology remains elusive. Chronic treatments with two γ-secretase modulators, ibuprofen and CHF5074, disclosed higher activity of CHF5074 in ameliorating brain plaque deposition and spatial memory deficits in transgenic mice expressing human amyloid precursor protein (hAPP) with Swedish and London mutations (APP(SL) mice). The aim of our study was to investigate in APP(SL) mice the effect of the two compounds on the accumulation of native hyperphosphorylated tau as well as on the GSK-3ß signaling. CHF5074 was more effective than ibuprofen in reducing tau pathology, though both compounds decreased the GSK-3ß level and increased the GSK-3ß inhibitory phosphorylation near to the non-Tg values. The inhibition of GSK-3ß appeared to be secondary to the reduction of Aß generation as, differently from LiCl, CHF5074 reproduced its effect in hAPP-overexpressing neuroglioma cells, but not in wild-type primary neurons. Our data show that the novel γ-secretase modulator CHF5074 can fully reverse ß-amyloid-associated tau pathology, thus representing a promising therapeutic agent for AD.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ciclopropanos/farmacología , Flurbiprofeno/análogos & derivados , Neuronas/efectos de los fármacos , Proteínas tau/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Células Cultivadas , Inhibidores de la Ciclooxigenasa/farmacología , Dieta , Modelos Animales de Enfermedad , Flurbiprofeno/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Humanos , Ibuprofeno/farmacología , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas tau/genética
14.
J Neuropathol Exp Neurol ; 68(10): 1103-15, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19918122

RESUMEN

After denervation of adult rat abdominal muscles, the postsynaptic apparatus of neuromuscular junctions (NMJs) retains its original architecture and clustering of acetylcholine receptors (AChRs). When descending fibers of the spinal cord are surgically diverted to this muscle by a nerve grafting procedure, supraspinal glutamatergic neurons can innervate muscle fibers and restore motor function; the newly formed NMJs switch from a cholinergic to a glutamatergic-type synapse. We show here that regenerating nerve endings contact the fibers in an area occupied by cholinergic endplates. These NMJs are morphologically indistinguishable from those in controls, but they differ in the subunit composition of AChRs. Moreover, by immunofluorescence and immunoelectron microscopy, new NMJs express glutamatergic synapse markers. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluR1 partially colocalizes with AChRs, and vesicular glutamate transporter 2 is localized in the presynaptic compartment. Immunoprecipitation analysis of membranes from reinnervated muscle showed that AMPA receptor subunits GluR1 and GluR2 coimmunoprecipitate with rapsyn, the AChR-anchoring protein at the NMJ. Taken together, these results indicate that cholinergic endplates can be targeted by new glutamatergic projections and that the clustering of AMPA receptors occurs there.


Asunto(s)
Ácido Glutámico/metabolismo , Placa Motora/fisiología , Músculo Esquelético/fisiología , Regeneración Nerviosa/fisiología , Unión Neuromuscular/fisiología , Receptores Colinérgicos/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Masculino , Microscopía Inmunoelectrónica , Placa Motora/ultraestructura , Proteínas Musculares/metabolismo , Músculo Esquelético/inervación , Músculo Esquelético/ultraestructura , Unión Neuromuscular/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Ratas , Ratas Wistar , Receptores AMPA/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
15.
Int Rev Neurobiol ; 85: 351-62, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19607980

RESUMEN

Nuclear factor-kappaB (NF-kappaB) is a dimeric transcription factor composed of five members, p50, RelA/p65, c-Rel, RelB, and p52 that can diversely combine to form the active transcriptional dimer. NF-kappaB controls the expression of genes that regulate a broad range of biological processes in the central nervous system such as synaptic plasticity, neurogenesis, and differentiation. Although NF-kappaB is essential for neuron survival and its activation may protect neurons against oxidative-stresses or ischemia-induced neurodegeneration, NF-kappaB activation can contribute to inflammatory reactions and apoptotic cell death after brain injury and stroke. It was proposed that the death or survival of neurons might depend on the cell type and the timing of NF-kappaB activation. We here discuss recent evidence suggesting that within the same neuronal cell, activation of diverse NF-kappaB dimers drives opposite effects on neuronal survival. Unbalanced activation of NF-kappaB p50/RelA dimer over c-Rel-containing complexes contributes to cell death secondary to the ischemic insult. While p50/RelA acts as transcriptional inducer of Bcl-2 family proapoptotic Bim and Noxa genes, c-Rel dimers specifically promote transcription of antiapototic Bcl-xL gene. Changes in the nuclear content of c-Rel dimers strongly affect the threshold of neuron vulnerability to ischemic insult and agents, likewise leptin, activating a NF-kappaB/c-Rel-dependent transcription elicit neuroprotection in animal models of brain ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Supervivencia Celular/fisiología , FN-kappa B/fisiología , Neuronas/patología , Neuronas/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Muerte Celular/fisiología , Dimerización , FN-kappa B/biosíntesis , Neuronas/metabolismo , Activación Transcripcional
16.
J Neurochem ; 108(2): 475-85, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19094066

RESUMEN

Diverse nuclear factor-kappaB subunits mediate opposite effects of extracellular signals on neuron survival. While RelA is activated by neurotoxic agents, c-Rel drives neuroprotective effects. In brain ischaemia RelA and p50 factors rapidly activate, but how they associate with c-Rel to form active dimers and contribute to the changes in diverse dimer activation for neuron susceptibility is unknown. We show that in both cortical neurons exposed to oxygen glucose deprivation (OGD) and mice subjected to brain ischaemia, activation of p50/RelA was associated with inhibition of c-Rel/RelA dimer and no change p50/c-Rel. Targeting c-Rel and RelA expression revealed that c-Rel dimers reduced while p50/RelA enhanced neuronal susceptibility to anoxia. Activation of p50/RelA complex is known to induce the pro-apoptotic Bim and Noxa genes. We now show that c-Rel-containing dimers, p50/c-Rel and RelA/c-Rel, but not p50/RelA, promoted Bcl-xL transcription. Accordingly, the OGD exposure induced Bim, but reduced Bcl-xL promoter activity and decreased the content of endogenous Bcl-xL protein. These findings demonstrate that within the same neuronal cell, the balance between activation of p50/RelA and c-Rel-containing complexes fine tunes the threshold of neuron vulnerability to the ischaemic insult. Selective targeting of different dimers will unravel new approaches to limit ischaemia-associated apoptosis.


Asunto(s)
Infarto de la Arteria Cerebral Media/patología , Subunidad p50 de NF-kappa B/metabolismo , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-rel/fisiología , Factor de Transcripción ReIA/fisiología , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Modelos Animales de Enfermedad , Embrión de Mamíferos , Regulación de la Expresión Génica/fisiología , Glucosa/deficiencia , Humanos , Hipoxia , Inmunoprecipitación/métodos , Etiquetado Corte-Fin in Situ , Infarto de la Arteria Cerebral Media/fisiopatología , Ratones , Ratones Endogámicos C57BL , Subunidad p50 de NF-kappa B/genética , Neuroblastoma , Proteínas Proto-Oncogénicas c-rel/genética , ARN Interferente Pequeño/farmacología , Factor de Transcripción ReIA/genética , Transfección/métodos , Proteína bcl-X/metabolismo
17.
FEBS J ; 276(1): 27-35, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19087197

RESUMEN

Nuclear factor-kappaB (NF-kappaB) has been proposed to serve a dual function as a regulator of neuron survival in pathological conditions associated with neurodegeneration. NF-kappaB is a transcription family of factors comprising five different proteins, namely p50, RelA/p65, c-Rel, RelB and p52, which can combine differently to form active dimers in response to external stimuli. Recent research shows that diverse NF-kappaB dimers lead to cell death or cell survival in neurons exposed to ischemic injury. While the p50/p65 dimer participates in the pathogenesis of post-ischemic injury by inducing pro-apoptotic gene expression, c-Rel-containing dimers increase neuron resistance to ischemia by inducing anti-apoptotic gene transcription. We present, in this report, the latest findings and consider the therapeutic potential of targeting different NF-kappaB dimers to limit ischemia-associated neurodegeneration.


Asunto(s)
Daño Encefálico Crónico/etiología , Isquemia Encefálica/fisiopatología , FN-kappa B/fisiología , Neuronas/patología , Animales , Apoptosis/genética , Daño Encefálico Crónico/patología , Daño Encefálico Crónico/fisiopatología , Isquemia Encefálica/patología , Dimerización , Regulación de la Expresión Génica , Humanos , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...