Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202400885, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39032088

RESUMEN

Carbon dots (CDs) are novel carbon-based luminescent materials with wide-ranging applications in biosensing, bioimaging, drug transportation, optical devices, and beyond. Their advantageous attributes, including biocompatibility, biodegradability, antioxidant activity, photostability, small particle size (< 10 nm), and strong light absorption and excitation across a broad range of wavelengths, making them promising candidates in the field of photodynamic therapy (PDT) as photosensitizers (PSs). Further enhancements in functionality are imperative to enhance the effectiveness of CDs in PDT applications, notwithstanding their inherent benefits. Recently, doping agents and solvents have been demonstrated to improve CDs' optical properties, solubility, cytotoxicity, and organelle targeting efficiency. These improvements result from modifications to the CDs' carbon skeleton matrices, functional groups on the surface state, and chemical structures. This review discusses the modification of CDs with heteroatom dopants, dye dopants, and solvents to improve their physicochemical and optical properties for PDT applications. The correlations between the surface chemistry, functional groups, structure of the CDs and their optical characteristics toward quantum yield, redshift feature and reactive oxygen species generation, have also been discussed. Finally, the progressive trends for the use of CDs in PDT applications are also addressed in this review.

2.
Sci Rep ; 14(1): 7550, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555319

RESUMEN

This research aimed to study on nanocellulose production from palm bunch using process design and cost analysis. Choline chloride based deep eutectic solvent pretreatment was selected for high-purity cellulose separation at mild condition, followed by nano-fibrillation using mechanical treatment. Three types of choline chloride-based deep eutectic solvents employing different hydrogen-bond donors (HBDs) namely lactic acid, 1,3-butanediol and oxalic acid were studied. The optimal cellulose extraction condition was choline chloride/lactic acid (ChLa80C) pretreatment of palm empty bunch at 80 °C followed by bleaching yielding 94.96%w/w cellulose content in product. Size reduction using ultrasonication and high-pressure homogenization produced nanocellulose at 67.12%w/w based on cellulose in raw material. Different morphologies of nanocellulose were tunable in the forms of nanocrystals, nano-rods and nanofibers by using dissimilar deep eutectic solvents. This work offered a sustainable and environmentally friendly process as well as provided analysis of DES pretreatment and overview operating cost for nanocellulose production. Application of nanocellulose for the fabrication of highly functional and biodegradable material for nanomedicine, electronic, optical, and micromechanical devices is achievable in the near future.

3.
ACS Omega ; 9(2): 3006-3016, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38250354

RESUMEN

The development of low-cost purification technology is an indispensable need for industrial biorefinery. Xylose is easily obtained from hydrothermal pretreatment of lignocellulosic biomass. This current study emphasizes the chromatographic monosaccharide separation process using commercial cation-exchange resins (CER) including Amberlite 120 and Indion 225 to separate xylose from a mixture of hydrolysates. To understand the performance of the two CER, the studies of equilibrium, thermodynamics, and kinetics were evaluated. In this study, with different xylose concentrations, the adsorption equilibrium was found to follow the Freundlich isotherm model well (R2 > 0.90 for both CER). The results indicated that a pseudo-second-order model represented the xylose adsorption kinetics. In addition, the activation energy of xylose adsorption onto both CER, i.e., Amberlite 120 and Indion 225 was 34.9 and 87.1 kJ/mol, respectively. The present adsorption studies revealed the potential of these commercial CER to be employed as effective adsorbents for monosaccharide separation technology.

4.
Sci Technol Adv Mater ; 24(1): 2260298, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859865

RESUMEN

Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.

5.
Int J Pharm X ; 6: 100209, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37711848

RESUMEN

Regarding the convergence of the worldwide epidemic, the appearance of bacterial infection has occasioned in a melodramatic upsurge in bacterial pathogens with confrontation against one or numerous antibiotics. The implementation of engineered nanostructured particles as a delivery vehicle for antimicrobial agent is one promising approach that could theoretically battle the setbacks mentioned. Among all nanoparticles, silica nanoparticles have been found to provide functional features that are advantageous for combatting bacterial contagion. Apart from that, carbon dots, a zero-dimension nanomaterial, have recently exhibited their photo-responsive property to generate reactive oxygen species facilitating to enhance microorganism suppression and inactivation ability. In this study, potentials of core/shell mesoporous silica nanostructures (MSN) in conjugation with carbon dots (CDs) toward antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli have been investigated. Nitrogen and sulfur doped CDs (NS/CDs) conjugated with MSN which were cost effective nanoparticles exhibited much superior antimicrobial activity for 4 times as much as silver nanoparticles against all bacteria tested. Among all nanoparticles tested, 0.40 M NS/CDs@MSN showed the greatest minimal biofilm inhibitory at very low concentration (< 0.125 mg mL-1), followed by 0.20 M NS/CDs@MSN (0.5 mg mL-1), CD@MSN (25 mg mL-1), and MSN (50 mg mL-1), respectively. Immobilization of NS/CDs@MSN in polyvinyl alcohol (PVA) hydrogel was performed and its effect on antimicrobial activity, biofilm controlling efficiency, and cytotoxicity toward fibroblast (NIH/3 T3 and L-929) cells was additionally studied for further biomedical applications. The results demonstrated that 0.40 M NS/CDs-MSN@PVA hydrogel exhibited the highest inhibitory effect on S. aureus > P. aeruginosa > E. coli. In addition, MTT assay revealed some degree of toxicity of 0.40 M NS/CDs-MSN@PVA hydrogel against L-929 cells by a slight reduction of cell viability from 100% to 81.6% when incubated in the extract from 0.40 M NS/CDs-MSN@PVA hydrogel, while no toxicity of the same hydrogel extract was detected toward NIH/3 T3 cells.

6.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047002

RESUMEN

Textile industries currently face vast challenges for the active removal of colored wastewater. Indeed, sustainable, recyclable, and green approaches are still lacking to achieve this aim. Thus, the present study explored the utilization of highly functional, green, recyclable, fully bio-based, and cost-effective composite membranes from post-consumer cotton fabrics and palm waste for wastewater treatment purposes. Highly functional cellulose nanofibers (CNF) were produced from waste cotton fabrics and filter paper using an acid hydrolysis technique. The yield of nanofibers extracted from waste cotton fabrics and filter paper was 76.74 and 54.50%, respectively. The physical, chemical, and structural properties of nanofibers were studied using various advanced analytical techniques. The properties of isolated nanofibers were almost similar and comparable to those of commercial nanofibers. The surface charge densities were -94.0, -80.7, and -90.6 mV for the nanofibers of palm waste, cotton fibers, and filter paper, respectively. After membrane fabrication using vacuum and hot-pressing techniques, the characteristics of the membrane were analyzed. The results showed that the average pore size of the palm-waste membrane was 1.185 nm, while it was 1.875 nm for membrane from waste cotton fibers and filter paper. Congo red and methylene blue dyes were used as model solutions to understand the behavior of available functional groups and the surface ζ-potential of the membrane frameworks' interaction. The membrane made from palm waste had the highest dye removal efficiency, and it was 23% for Congo red and 44% for methylene blue. This study provides insights into the challenges associated with the use of postconsumer textile and agricultural waste, which can be potentially used in high-performance liquid filtration devices for a more sustainable society.


Asunto(s)
Colorantes , Rojo Congo , Colorantes/química , Azul de Metileno , Celulosa/química , Fibra de Algodón
7.
ACS Omega ; 8(9): 8675-8682, 2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36910962

RESUMEN

This research aimed to synthesize magnesium silicate (MgSiO3) used as a support for Ni-Fe cocatalysts in the depolymerization of kraft lignin. Magnesium silicate was prepared by a hydrothermal method, followed by metal solution impregnation to obtain lignin depolymerization catalysts. The catalytic efficiency of kraft lignin depolymerization to valued phenolic compounds was studied by varying the ratios of Ni and Fe on the MgSiO3 support. Moreover, other factors such as temperature, reaction time, and catalyst recycling affected both the quality and quantity of the products studied. The results illustrated that the catalyst 10Ni10Fe/MS produced all lignin depolymerization products with the highest yield (14.29 wt %) using reaction conditions of 300 °C and 1 h. In addition, the main products were found to be catechol (11.38 wt %), guaiacol (1.51 wt %), and phenol (0.79 wt %). More importantly, the 10Ni10Fe/MS catalyst showed good reusability even after two recycling processes, and the obtained phenol and guaiacol were found to be 0.63 and 1.01 wt %, respectively.

8.
Int J Mol Sci ; 24(2)2023 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-36674748

RESUMEN

Cryo-induced hydrogel from cellulose is a new class of biomaterials for drug delivery, cell delivery, bone and skin tissue engineering for cell proliferation and regeneration applications. This research aimed to synthesize cryo-induced hydrogel from cellulose and carboxymethyl cellulose (CMC) produced from empty bunch's cell wall of Elaeis guineensis. First, the experiment was to produce cellulose-rich material using hot-compressed water extraction followed by alkaline delignification and bleaching with H2O2. The obtained bleached EFB cellulose was used as the substrate for CMC, and the optimal condition with the highest degree of carboxyl substitution (DS) of 0.75 was achieved when varying NaOH and monochloroacetic acid concentration as well as etherification temperature using fractional factorial design. For cryogelation study, hydrogels were synthesized from cellulose, CMC and beta-cyclodextrin (ß-CD) by dissolving cellulose-based matrix in a NaOH/urea system, and the cellulose (CEL) solution was frozen spontaneously at -40 °C followed by high speed mixing to loosen cellulose fibrils. Epichlorohydrin (ECH) and Polyethylene glycol diglycidyl ether (PEGDE) were used as a cross-linker. First, the ratio of cellulose and CMC with different amounts of ECH was investigated, and subsequently the proper ratio was further studied by adding different crosslinkers and matrices, i.e., CMC and ß-CD. From the result, the ECH crosslinked CMC-CEL (E-CMC-CEL) gel had the highest swelling properties of 5105% with the average pore size of lyophilized hydrogel of 300 µm. In addition, E-CMC-CEL gel had the highest loading and release capability of tetracycline in buffer solution at pH 7.4 and 3.2. At pH 7.4, tetracycline loading and release properties of E-CMC-CEL gel were 65.85 mg g-1 dry hydrogel and 46.48 mg g-1 dry hydrogel (70.6% cumulative release), respectively. However, at pH 3.2, the loading and release capabilities of Tetracycline were moderately lower at 16.25 mg g-1 dry hydrogel and 5.06 mg g-1 dry hydrogel, respectively. The findings presented that E-CMC-CEL hydrogel was a suitable material for antibiotic tetracycline drug carrying platform providing successful inhibitory effect on Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively.


Asunto(s)
Antibacterianos , Celulosa , Celulosa/química , Antibacterianos/farmacología , Nanogeles , Hidróxido de Sodio , Peróxido de Hidrógeno , Hidrogeles/química , Polietilenglicoles , Agua/química , Tetraciclina , Carboximetilcelulosa de Sodio/química
9.
ACS Omega ; 7(44): 40025-40033, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36385830

RESUMEN

In this study, an environmentally benign carbon-based catalyst derived from extracted bagasse lignin (EL) was successfully synthesized by solvothermal carbonization and sulfonation with methane sulfonic acid (MSA). Interestingly, the results indicated that the use of MSA as a sulfonation agent made a catalyst with higher thermal stability than conventional sulfuric acid. Thus, in comparison to the catalyst prepared by using sulfuric acid, the catalyst prepared by using MSA (EL-MSA) exhibited higher catalytic activity in the esterification of stearic acid under near-critical methanol conditions. Under optimum conditions (260 °C for 5 min, a 9:1 methanol-to-stearic-acid molar ratio, 5 wt % catalyst loading, and 10% v/v toluene), the esterification over the EL-MSA catalyst promoted a 91.1% methyl stearate yield. Moreover, the results also revealed that the high thermal stability of the EL-MSA catalyst not only affects its great catalytic activity, but it also prevents damage to the porous structure and decomposition of acidic surface oxygen-containing functional groups. It contributes to the excellent reusability of the catalyst. After the fifth run, a high yield of 82.8% was obtained. The effect of alcohol type on the catalyst performance was also studied. It was found that the EL-MSA catalyst also presented good performance toward esterification with ethanol and propanol, from which ethyl stearate and propyl stearate with a more than 80% ester yield can be achieved.

10.
Anal Chim Acta ; 1230: 340368, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36192059

RESUMEN

Detection of hydrogen peroxide and glucose in nanomolar level is crucial for point-of-care medical diagnosis. It has been reported that human's central nervous system diseases such as Alzheimer's disease, Parkinson's disease, and even amyotrophic lateral sclerosis, are presumably caused H2O2 or reactive radical species (ROS). Sensing of H2O2 released from human biofluids, tissues, organ from metabolism disorder at ultra-low concentration assists for early identification of severe diabetis mellitus related to glucose, and heart attack, as well as stroke related to cholesterol. In this work, carbon dots (CDs) having an average diameter at 6.99 nm with highly photoluminescence performance were successfully synthesized from palm empty fruit bunch (EFB) using green and environmentally friendly process via hydrothermal condition. CDs acted well on peroxidase-like activity for H2O2 detection at room temperature, however their sensitivity on ultra-low H2O2 concentration needed to be improved. To enhance their reactivity on H2O2 nanozyme activity at room temperature, synthesis of hybrid metal nanoparticles (AgNPs and PtNPs) on CDs surface was established. The findings exhibited that CDs/PtNPs was the most suitable nanozyme achieving highly efficient peroxidase mimic for dual mode of colorimetric and fluorescent H2O2 sensing platform at very low limit of detection of 0.01 mM (10 nM) H2O2.


Asunto(s)
Colorimetría , Nanocompuestos , Carbono , Colorantes , Glucosa , Humanos , Peróxido de Hidrógeno , Peroxidasa/metabolismo , Platino (Metal) , Especies Reactivas de Oxígeno
11.
Int J Biol Macromol ; 216: 710-727, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35803411

RESUMEN

Lignin is a promising alternative to petrochemical precursors for conversion to industrial-needed products. Organosolv lignins were extracted from different agricultural wastes including sugarcane bagasse (BG) and trash (ST), corncob (CC), eucalyptus wood (EW), pararubber woodchip (PRW), and palm wastes (palm kernel cake (PKC), palm fiber (PF), and palm kernel shell (PKS), representing different groups of lignin origins. Physicochemical characteristics of lignins were analyzed by several principal techniques. Most recovered lignin showed high purity of >90 % with trace sugar contamination, while lower purities were found for lignin from palm wastes. Hardwood lignins (EW and PRW) mainly contained guaiacyl (G) and syringyl (S) units with a minor fraction of p-hydroxyphenyl units (H) with high molecular weight, glass transition temperature, phenolic hydroxy group and low aliphatic hydroxy group. Grass-type lignins (BG, ST, CC) and palm lignins (PKC, PF, and PKS) contained three monolignols of H, G, and S units with lower molecular weights and C5-substituted hydroxy of S unit. Among the grass-type lignins, PKC lignin contained the highest nitrogen and lipophilic components with the lowest molecular weight, thermal stability, and glass transition temperature. This provides insights into properties of organosolv lignin as basis for their further applications in chemical, polymer and material industries.


Asunto(s)
Eucalyptus , Saccharum , Celulosa/análisis , Eucalyptus/química , Lignina/química , Poaceae , Madera/química
12.
Sci Rep ; 12(1): 10550, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35732805

RESUMEN

Carbon dots (CDs) are categorized as an emerging class of zero-dimension nanomaterials having high biocompatibility, photoluminescence, tunable surface, and hydrophilic property. CDs, therefore, are currently of interest for bio-imaging and nano-medicine applications. In this work, polyethylene glycol functionalized CDs (CD-PEG) were prepared from oil palm empty fruit bunch by a one-pot hydrothermal technique. PEG was chosen as a passivating agent for the enhancement of functionality and photoluminescence properties of CDs. To prepare the CDs-PEG, the effects of temperature, time, and concentration of PEG were investigated on the properties of CDs. The as-prepared CDs-PEG were characterized by several techniques including dynamic light scattering, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, fluorescence spectroscopy, Raman spectroscopy, Fourier-transform infrared spectroscopy and Thermogravimetric analysis. The as-prepared CDs under hydrothermal condition at 220 °C for 6 h had spherical morphology with an average diameter of 4.47 nm. Upon modification, CDs-PEG were photo-responsive with excellent photoluminescence property. The CDs-PEG was subsequently used as a drug carrier for doxorubicin [DOX] delivery to CaCo-2, colon cancer cells in vitro. DOX was successfully loaded onto CDs-PEG surface confirmed by FT-IR and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer (MALDI-TOF/MS) patterns. The selective treatment of CDs-PEG-DOX against the colorectal cancer cells, , relative to normal human fibroblast cells was succesfully demonstrated.


Asunto(s)
Neoplasias del Colon , Puntos Cuánticos , Células CACO-2 , Carbono/química , Neoplasias del Colon/tratamiento farmacológico , Doxorrubicina , Colorantes Fluorescentes/química , Humanos , Polietilenglicoles/química , Puntos Cuánticos/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanomedicina Teranóstica
13.
Bioresour Technol ; 360: 127522, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35764279

RESUMEN

This study aimed to develop an integrative process for converting rubberwood waste into sugars, methane, and levulinic acid. Sulfuric acid pretreatment at pH 2.5 yielded the highest glucose of 182.5 g/kg rubberwood waste. Replacing the acid solution with sulfuric acid wastewater led to 11.0% lower glucose yield than that obtained using sulfuric acid. However, the cost reduction equals the difference in revenues between sulfuric acid wastewater and sulfuric acid, resulting in similar total cost and revenue. Furthermore, thermal reactions of the process water resulted in the highest yield of levulinic acid, 17.9% at 220 °C. Meanwhile, anaerobic digestibility of enzymatic hydrolysis residue was increased using inoculum from a digester treating pig farm wastewater owing to the acetoclastic pathway. These co-products potentially returned additional revenues, accounting for 45.8% of the total revenue. These findings highlight the potential pathway for valorization of rubberwood waste via the integrated approach with acid wastewater pretreatment.


Asunto(s)
Ácidos Levulínicos , Aguas Residuales , Anaerobiosis , Animales , Glucosa , Metano/metabolismo , Porcinos
14.
Int J Mol Sci ; 23(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35563393

RESUMEN

This work aims to enhance the value of palm empty fruit bunches (EFBs), an abundant residue from the palm oil industry, as a precursor for the synthesis of luminescent carbon dots (CDs). The mechanism of fIuorimetric sensing using carbon dots for either enhancing or quenching photoluminescence properties when binding with analytes is useful for the detection of ultra-low amounts of analytes. This study revealed that EFB-derived CDs via hydrothermal synthesis exceptionally exhibited luminescence properties. In addition, surface modification for specific binding to a target molecule substantially augmented their PL characteristics. Among the different nitrogen and sulfur (N and S) doping agents used, including urea (U), sulfate (S), p-phenylenediamine (P), and sodium thiosulfate (TS), the results showed that PTS-CDs from the co-doping of p-phenylenediamine and sodium thiosulfate exhibited the highest PL properties. From this study on the fluorimetric sensing of several metal ions, PTS-CDs could effectively detect Fe3+ with the highest selectivity by fluorescence quenching to 79.1% at a limit of detection (LOD) of 0.1 µmol L-1. The PL quenching of PTS-CDs was linearly correlated with the wide range of Fe3+ concentration, ranging from 5 to 400 µmol L-1 (R2 = 0.9933).


Asunto(s)
Carbono , Puntos Cuánticos , Carbono/química , Iones/química , Nitrógeno/química , Puntos Cuánticos/química , Espectrometría de Fluorescencia/métodos , Azufre/química
15.
Molecules ; 26(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34946525

RESUMEN

Biomass valorization to building block chemicals in food and pharmaceutical industries has tremendously gained attention. To produce monophenolic compounds from palm empty fruit bunch (EFB), EFB was subjected to alkaline hydrothermal extraction using NaOH or K2CO3 as a promotor. Subsequently, EFB-derived lignin was subjected to an oxidative depolymerization using Cu(II) and Fe(III) mixed metal oxides catalyst supported on γ-Al2O3 or SiO2 as the catalyst in the presence of hydrogen peroxide. The highest percentage of total phenolic compounds of 63.87 wt% was obtained from microwave-induced oxidative degradation of K2CO3 extracted lignin catalyzed by Cu-Fe/SiO2 catalyst. Main products from the aforementioned condition included 27.29 wt% of 2,4-di-tert-butylphenol, 19.21 wt% of syringol, 9.36 wt% of acetosyringone, 3.69 wt% of acetovanillone, 2.16 wt% of syringaldehyde, and 2.16 wt% of vanillin. Although the total phenolic compound from Cu-Fe/Al2O3 catalyst was lower (49.52 wt%) compared with that from Cu-Fe/SiO2 catalyst (63.87 wt%), Cu-Fe/Al2O3 catalyst provided the greater selectivity of main two value-added products, syringol and acetosyrigone, at 54.64% and 23.65%, respectively (78.29% total selectivity of two products) from the NaOH extracted lignin. The findings suggested a promising method for syringol and acetosyringone production from the oxidative heterogeneous lignin depolymerization under low power intensity microwave heating within a short reaction time of 30 min.


Asunto(s)
Acetofenonas , Cobre/química , Hierro/química , Lignina/química , Microondas , Poaceae/química , Pirogalol/análogos & derivados , Acetofenonas/química , Acetofenonas/aislamiento & purificación , Óxido de Aluminio/química , Catálisis , Oxidación-Reducción , Pirogalol/química , Pirogalol/aislamiento & purificación
16.
ACS Omega ; 6(35): 22791-22802, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34514250

RESUMEN

Cellulose-based composites are promising biomaterials with potent applications in absorbents, cosmetics, and healthcare industries. In this study, the cellulose fractions from various agricultural residues, including bagasse (BG), rice straw (RS), corncob (CC), and palm fiber (PF), were prepared by the organosolv process using 70% v/v ethanol, followed by bleaching and forming with chitosan powder. Organosolv treatment at 180 °C of BG, RS, and PF and at 190 °C of CC for 60 min using H2SO4 as the catalyst was optimal for high cellulose recovery (87.9-98.9%) with efficient removals of the hemicellulose (59.3-86.0%) and lignin (61.1-73.7%). High cellulose purity in the solids (76.9-86.8%) was obtained after bleaching with 4% v/v H2O2 compared with that of 84.9% for commercial cellulose. The isolated celluloses were incubated with 2% w/v chitosan solution in acetic acid for the formation of the hydrogen-bonding interaction between the cellulose fiber and chitosan. The pieces of evidence of the obtained sheet materials were characterized by scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and thermogravimetric analysis. All cellulose-chitosan materials absorbed water fraction in the range of 54.3-94.2 g/m2. Efficient oil absorption was observed for cellulose-chitosan sheets prepared from PF (96.3 g/m2) and CC (81.1 g/m2). This work demonstrated the preparation of potent biobased absorbents with a promising application in waste treatment and healthcare industries.

17.
Front Chem ; 9: 697237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34422761

RESUMEN

Fractionation of lignocellulosic is a fundamental step in the production of value-added biobased products. This work proposes an initiative to efficiently extract lignin from the corn stover using a single-step solvothermal fractionation in the presence of an acid promoter (H2SO4). The organic solvent mixture used consists of ethyl acetate, ethanol, and water at a ratio of 30: 25:45 (v/v), respectively. H2SO4 was utilized as a promoter to improve the performance and selectivity of lignin removal from the solid phase and to increase the amount of recovered lignin in the organic phase. The optimal conditions for this extraction, based on response surface methodology (RSM), are a temperature of 180°C maintained for 49.1 min at an H2SO4 concentration of 0.08 M. The optimal conditions show an efficient reaction with 98.0% cellulose yield and 75.0% lignin removal corresponding to 72.9% lignin recovery. In addition, the extracted lignin fractions, chemical composition, and structural features were investigated using Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis, and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance spectroscopy (2D-HSQC NMR). The results indicate that the recovered lignin primarily contains a ß-O-4 linking motif based on 2D-HSQC spectra. In addition, new C-C inter-unit linkages (i.e., ß-ß, and ß-5) are not formed in the recovered lignin during H2SO4-catalyzed solvothermal pretreatment. This work facilitates effective valorization of lignin into value-added chemicals and fuels.

18.
Chemosphere ; 277: 130280, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33784554

RESUMEN

In this work, NiO level was varied from 5 to 40% whereas CexZr1-xO2 (x = 0.5, 0.7 and 0.9) (CZO) and La0.3Sr0.7Co0.7Fe0.3O3 (LSCF) were chosen as two different kinds of support. Regardless the type of support, the surface NiO (at 40%) was completely reduced at 600 °C, giving the amount of activated Ni at 8950 µmol/gcat. The reducibility of the updoped LSCF was found to be much better than that of the undoped CZO, evidenced by the H2-TPR of the both materials at 600 °C where the oxygen storage capacity (OSC) of LSCF and CZO was determined at 4273 and 307 µmol/gcat, respectively. In contrast, the OSC of 40%Ni-CZO (where x = 0.7, 0.9) was found to be higher than that of the LSCF, implying that the addition of Ni more enhanced both electronic defect and oxygen mobility in CZO than in LSCF, according to the H2-TPR results. Coke resistant of CZO is presumable more satisfying than that of LSCF, thus, the longer lifespan of the CZO catalyst system is expected. The catalytic performance of 40%Ni-CZO (x = 0.9) was however comparable with 40%Ni-LSCF as they accommodate the same number of active sites. The slightly better catalytic performance of the 40%Ni-CZO (x = 0.9) could be due to its smaller crystallite size (CZO = 26.83, LSCF = 35.73), rendering more access for the relative gaseous reactants. The best catalyst amongst all was 5%Ni-CZO (x = 0.9), giving 89% toluene conversion, 46% H2 yield, 71% CO selectivity, and 25% CO2 selectivity at optimum reaction temperature of 700 °C.


Asunto(s)
Níquel , Vapor , Catálisis , Gases , Circonio
19.
ACS Omega ; 6(8): 5389-5398, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681578

RESUMEN

Organosolv fractionation is a promising approach for the separation of lignocellulosic components in integrated biorefineries where each component can be fully valorized into valuable platform chemicals and biofuels. In this study, microwave-accelerated organosolv fractionation was developed for the modification of lignocellulosic fractionation of rice husk. The fractionation condition was optimized for 1 h with the microwave irradiation at 300 W using a ternary solvent mixture composed of 24%:32%:44% water/ethanol/methyl isobutyl ketone. The effects of mineral acids (HCl, H3PO4, and H2SO4) and heterogeneous acid promoters (HCl, H3PO4, and H2SO4 impregnated over activated carbon) on the efficiency and selectivity of product yields (i.e., glucan, hemicellulose-derived products, and lignin) were also investigated. It was found that the use of H3PO4-activated carbon as the promoter showed superior performance on the fractionation of rice husk components, resulting in 88.8% recovery of cellulose, with 63.8% purity in the solid phase, whereas the recovery of hemicellulose (66.4%) with the lowest formation of furan and 5-hydroxymethyl furfural and lignin (81.0%) without sugar cross-contamination was obtained in the aqueous ethanol phase and organic phase, respectively. In addition, the morphology structure of fractionated rice husk presented 2.6-fold higher surface area (5.4 m2/g) of cellulose-enriched fraction in comparison with the native rice husk (2.1 m2/g), indicating the improvement of enzyme accessibility. Besides, the chemical changes of isolated lignin were also investigated by Fourier-transform infrared spectroscopy. This work gives pieces of information into the efficiencies of the microwave strategy as a climate neighborly elective fractionation method for this serious starting material in the biotreatment facility business.

20.
ACS Omega ; 6(4): 2999-3016, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33553918

RESUMEN

Hydrodeoxygenation (HDO) of bio-oil derived from liquefaction of a palm empty fruit bunch (EFB) in glycerol was investigated. To enhance the heating value and reduce the oxygen content of upgraded bio-oil, hydrodeoxygenation of light bio-oil over Ni- and Co-based catalysts on an Al2O3 support was performed in a rotating-bed reactor. Two consecutive steps were conducted to produce bio-oil from EFB including (1) microwave-assisted wet torrefaction of EFB and (2) solvothermolysis liquefaction of treated EFB in a Na2CO3/glycerol system. The HDO of as-prepared bio-oil was subsequently performed in a unique design reactor possessing a rotating catalyst bed for efficient interaction of a catalyst with bio-oil and facile separation of the catalyst from upgraded bio-oil after the reaction. The reaction was carried out in the presence of each mono- or bimetallic catalyst, namely, Co/Al2O3, Ni/Al2O3, NiMo/Al2O3, and CoMo/Al2O3, packed in the rotating-mesh host with a rotation speed of 250 rpm and kept at 300 and 350 °C, 2 MPa hydrogen for 1 h. From the results, the qualities of upgraded bio-oil were substantially improved for all catalysts tested in terms of oxygen reduction and increased high heating value (HHV). Particularly, the NiMo/Al2O3 catalyst exhibited the most promising catalyst, providing favorable bio-oil yield and HHV. Remarkably greater energy ratios and carbon recovery together with high H/O, C/O, and H/C ratios were additionally achieved from the NiMo/Al2O3 catalyst compared with other catalysts. Cyclopentanone and cyclopentene were the main olefins found in hydrodeoxygenated bio-oil derived from liquefied EFB. It was observed that cyclopentene was first generated and subsequently converted to cyclopentanone under the hydrogenation reaction. These compounds can be further used as a building block in the synthesis of jet-fuel range cycloalkanes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA