Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Nat Commun ; 15(1): 2915, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575645

Band engineering stands as an efficient route to induce strongly correlated quantum many-body phenomena. Besides inspiring analogies among diverse physical fields, tuning on demand the group velocity is highly attractive in photonics because it allows unconventional flows of light. Λ-schemes offer a route to control the propagation of light in a lattice-free configurations, enabling exotic phases such as slow-light and allowing for highly optical non-linear systems. Here, we realize room-temperature intercavity Frenkel polaritons excited across two strongly coupled cavities. We demonstrate the formation of a tuneable heavy-polariton, akin to slow light, appearing in the absence of a periodic in-plane potential. Our photonic architecture based on a simple three-level scheme enables the unique spatial segregation of photons and excitons in different cavities and maintains a balanced degree of mixing between them. This unveils a dynamical competition between many-body scattering processes and the underlying polariton nature which leads to an increased fluorescence lifetime. The intercavity polariton features are further revealed under appropriate resonant pumping, where we observe suppression of the polariton fluorescence intensity.

2.
Heliyon ; 10(2): e24645, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38304793

Carbon capture, utilization, and storage (CCUS) technology offer promising solution to mitigate the threatening consequences of large-scale anthropogenic greenhouse gas emissions. Within this context, this report investigates the influence of NiO deposition on the Li4SiO4 surface during the CO2 capture process and its catalytic behavior in hydrogen production via dry methane reforming. Results demonstrate that the NiO impregnation method modifies microstructural features of Li4SiO4, which positively impact the CO2 capture properties of the material. In particular, the NiO-Li4SiO4 sample captured twice as much CO2 as the pristine Li4SiO4 material, 6.8 and 3.4 mmol of CO2 per gram of ceramic at 675 and 650 °C, respectively. Additionally, the catalytic results reveal that NiO-Li4SiO4 yields a substantial hydrogen production (up to 55 %) when tested in the dry methane reforming reaction. Importantly, this conversion remains stable after 2.5 h of reaction and is selective for hydrogen production. This study highlights the potential of Li4SiO4 both a support and a captor for a sorption-enhanced dry reforming of methane. To the best of our knowledge, this is the first report showcasing the effectiveness of Li4SiO4 as an active support for Ni-based catalysis in the dry reforming of methane. These findings provide valuable insights into the development of this composite as a dual-functional material for carbon dioxide capture and conversion.

3.
Dalton Trans ; 53(10): 4790-4796, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38372055

The Al(III)-based MOF CYCU-3 exhibits a relevant SO2 adsorption performance with a total uptake of 11.03 mmol g-1 at 1 bar and 298 K. CYCU-3 displays high chemical stability towards dry and wet SO2 exposure. DRIFTS experiments and computational calculations demonstrated that hydrogen bonding between SO2 molecules and bridging Al(III)-OH groups are the preferential adsorption sites. In addition, photoluminescence experiments demonstrated the relevance of CYCU-3 for application in SO2 detection with good selectivity for SO2 over CO2 and H2O. The change in fluorescence performance demonstrates a clear turn-on effect after SO2 interaction. Finally, the suppression of ligand-metal energy transfer along with the enhancement of ligand-centered π* → π electronic transition was proposed as a plausible fluorescence mechanism.

4.
J Mater Chem B ; 10(48): 9984-9991, 2022 12 14.
Article En | MEDLINE | ID: mdl-36285638

Linezolid (LNZ) is a new-generation synthetic molecule for the antibacterial treatment of severe infections, particularly in infective cases where the bacterial resistance to first-choice drugs is caused by Gram-positive pathogens. In this context, since 2009, some strains resistant to LNZ in patients with long-term treatments have been reported. Therefore, there is a need to use not only new drug molecules with antibacterial activities in the dosage form but also a different approach to pharmacotherapeutic strategies for skin infections, which lead to a reduction in the concentration of biocides. This work explores LNZ hosted at two isostructural MOFs, MOF-74(Zn) and MOF-74(Cu), as promising antimicrobial systems for gradual biocide release within 6 h. These systems reach a lower minimum inhibitory concentration (MIC) in comparison to free LNZ. Even a decreased MIC value is also observed, which is an encouraging result regarding the efficiency of the systems to control concentration-dependent antimicrobial resistance.


Anti-Bacterial Agents , Humans , Linezolid/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
5.
Nanoscale Adv ; 3(5): 1382-1391, 2021 Mar 09.
Article En | MEDLINE | ID: mdl-36132868

Herein, we report a systematic experimental and theoretical study about a wide-ranged band gap tuning of protonated titanate nanotubes H2Ti3O7 (Ti-NT) by an easy ion-exchange method using a low concentration (1 wt%) of transition metal cations. To characterize and describe the effect of M doping (M = Cu2+, Ni2+, Co2+, and Fe3+) on the electronic, optical and structural properties, semiconductors were analyzed by a combination of experimental methods and density functional theory (DFT) calculations. The nanotube band gap can be modified from 1.5 to 3.3 eV, which opens the possibility to use them in several optoelectronic applications such as photocatalysts under solar light irradiation.

6.
ACS Appl Mater Interfaces ; 12(37): 41758-41764, 2020 Sep 16.
Article En | MEDLINE | ID: mdl-32808761

A new material, MOF-type [Ir]@NU-1000, was accessed from the incorporation of the iridium organometallic fragment [Ir{κ3(P,Si,Si)PhP(o-C6H4CH2SiiPr2)2}] into NU-1000. The new material incorporates less than 1 wt % of Ir(III) (molar ratio Ir to NU-1000, 1:11), but the heat of adsorption for SO2 is significantly enhanced with respect to that of NU-1000. Being a highly promising adsorbent for SO2 capture, [Ir]@NU-1000 combines exceptional SO2 uptake at room temperature and outstanding cyclability. Additionally, it is stable and can be regenerated after SO2 desorption at low temperature.

7.
ACS Appl Mater Interfaces ; 12(16): 18885-18892, 2020 Apr 22.
Article En | MEDLINE | ID: mdl-32233387

The metal-organic framework (MOF)-type MFM-300(Sc) exhibits a combined physisorption and chemisorption capture of H2S, leading to a high uptake (16.55 mmol g-1) associated with high structural stability. The irreversible chemisorbed sulfur species were identified as low-order polysulfide (n = 2) species. The isostructural MFM-300(In) was demonstrated to promote the formation of different polysulfide species, paving the way toward a new methodology to incorporate polysulfides within MOFs for the generation of novel MOF-lithium/sulfur batteries.

8.
Phys Chem Chem Phys ; 22(15): 7969-7974, 2020 Apr 15.
Article En | MEDLINE | ID: mdl-32236261

CO is extremely toxic to humans since it can combine with haemoglobin to form carboxy-haemoglobin that reduces the oxygen-carrying capacity of blood. Metal-organic frameworks (MOFs), in particular InOF-1, are currently receiving preferential attention for the separation and capture of CO. In this investigation we report a theoretical study based on periodic density-functional-theory (DFT) analysis and matching experimental results (in situ DRIFTS). The aim of this article is to describe the non-covalent interactions between the functional groups of InOF-1 and the CO molecule since they are crucial to understand the adsorption mechanism of these materials. Our results show that the CO molecule mainly interacts with the µ2-OH hydroxo groups of InOF-1 through O-HO hydrogen bonds, and Cπ interactions by the biphenyl rings of the MOF. These results provide useful information on the CO adsorption mechanisms in InOF-1.

9.
RSC Adv ; 10(55): 33059-33070, 2020 Sep 07.
Article En | MEDLINE | ID: mdl-35515038

Nickel (5 wt%) supported on Nd-doped ceria was studied as catalysts in the DRM reaction at stoichiometric conditions in the range of 600-800 °C. Ce1-x Nd x O2-δ supports with different Nd contents (x = 0, 0.05, 0.1 and 0.2) were successfully synthesized. The role of oxygen vacancies by the incorporation of Nd3+ into the ceria lattice was investigated. These species were quantified by XRD and Raman spectroscopy, showing a linear dependence as a function of Nd content. Ni/Nd-ceria catalysts were prepared by wet impregnation. Although formation of oxygen vacancies, as well as microstructural features of the support (smaller crystallite sizes, higher surface area, and developed mesoporous structure) were improved as a function of the Nd content, no significant differences were observed in the catalytic properties of Ni/Nd-ceria in the DRM reaction. Despite this, compared to undoped ceria, all the Nd-doped CeO2 catalysts present an enhanced activity and stability, and the best catalytic performance was observed in the Ni/Ce0.95Nd0.05O2-δ sample. Quantification of carbon residues in spent catalysts showed, as expected, lower amounts in the Ni/Nd-ceria samples; nevertheless, among them, the catalyst with the higher amount of oxygen vacancies, is the one with the higher carbon residues. Incorporation of Nd in ceria changes the acid/base properties, diminishing the gasification capacity of the carbonaceous species. These results emphasize that the activity and stability in the Ni/Nd-ceria catalysts for the DRM reaction depend on two key factors, the redox and the acid/base properties of the CeO2 supports, offering insights about the necessary and adequate balance between these properties.

10.
Dalton Trans ; 48(24): 8611-8616, 2019 Jun 28.
Article En | MEDLINE | ID: mdl-31070211

The enhancement of CO2 capture due to the confinement of polar molecules within InOF-1 was previously demonstrated. In particular, the presence of MeOH produced 1.30-fold increase in the total CO2 capture. This was explained before with the presence of hydrogen bonds. However, a detailed analysis of the hydrogen bonds among µ2-OH functional groups, MeOH molecules and CO2 molecules was not elucidated; moreover, the possible mechanisms that could explain the enhancement of the capture were also not explained. In this investigation, the density functional theory (DFT) periodic calculations and experimental in situ DRIFTS results allowed us to postulate four plausible CO2 adsorption mechanisms for MeOH-functionalised InOF-1, which described the hydrogen bonds and rationalised the nature of the CO2 capture enhancement.

11.
RSC Adv ; 9(56): 32864-32872, 2019 Oct 10.
Article En | MEDLINE | ID: mdl-35529732

The toluene adsorption properties of InOF-1 are studied along with the confinement of small amounts of this non-polar molecule revealing a 1.38-fold increase in CO2 capture, from 5.26 wt% under anhydrous conditions to 7.28 wt% with a 1.5 wt% of pre-confined toluene at 298 K. The InOF-1 affinity towards toluene was experimentally quantified by ΔH ads (-46.81 kJ mol-1). InOF-1 is shown to be a promising material for CO2 capture under industrial conditions. Computational calculations (DFT and QTAIM) and DRIFTs in situ experiments provided a possible explanation for the experimental CO2 capture enhancement by showing how the toluene molecule is confined within InOF-1, which constructed a "bottleneck effect".

...