Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biol Chem ; 387(10-11): 1371-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17081109

RESUMEN

Thiols affect a variety of cell functions, an effect known as redox regulation, largely attributed to modification of transcription factors and intracellular signaling mechanisms. Since exofacial protein thiols are more exposed to redox-acting molecules used in cell culture and may represent sensors of the redox state of the environment, we investigated their susceptibility to redox regulation. Exofacial protein thiols were measured using cell-impermeable Ellman's reagent [5,5'-dithiobis(2-nitrobenzoic acid), DTNB]. For quantification, we also set up an ELISA assay based on the cell-impermeable biotinylated SH reagent, N-(biotinoyl)-N-(iodoacetyl) ethylendiamine (BIAM). Exposure of CHO cells to H(2)O(2) induces oxidation of surface thiols at concentrations not affecting intracellular GSH. Depletion (50%) of GSH decreases surface thiols by 88%. Surface thiols are also highly sensitive to thiol antioxidants, since exposure to 5 mM N-acetyl-L-cysteine (NAC) for 2 h augmented their expression without increasing GSH levels. Using BIAM labeling and two-dimensional gel electrophoresis, we show that this increase in surface thiols is due to the reduction of specific membrane proteins. Peptide mass fingerprinting by MALDI mass spectrometry allowed us to identify two of these proteins as Erp57 and vimentin.


Asunto(s)
Proteínas/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Animales , Antioxidantes/metabolismo , Células CHO , Cricetinae , Glutatión/metabolismo , Oxidación-Reducción , Estrés Oxidativo
2.
J Mol Cell Cardiol ; 37(5): 959-68, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15522273

RESUMEN

Diabetes and oxidative stress concur to cardiac myocyte death in various experimental settings. We assessed whether N-acetyl-L-cysteine (NAC), an antioxidant and glutathione precursor, has a protective role in a rat model of streptozotocin (STZ)-induced diabetes and in isolated myocytes exposed to high glucose (HG). Diabetic rats were treated with NAC (0.5 g/kg per day) or vehicle for 3 months. At sacrifice left ventricle (LV) myocyte number and size, collagen deposition and reactive oxygen species (ROS) were measured by quantitative histological methods. Diabetes reduced LV myocyte number by 29% and increased myocyte volume by 20% compared to non-diabetic controls. NAC protected from myocyte loss (+25% vs. untreated diabetics, P < 0.05) and reduced reactive hypertrophy (-16% vs. untreated diabetics, P < 0.05). Perivascular fibrosis was high in diabetic rats (+88% vs. control, P < 0.001) but prevented by NAC. ROS production and fraction of ROS-positive cardiomyocyte nuclei were drastically raised in diabetic rats (2.4- and 5.1-fold vs. control, P < 0.001) and normalized by NAC. In separate experiments, isolated adult rat ventricular myocytes were incubated in a medium containing high concentrations of glucose (HG, 25 mM) +/- 0.01 mM NAC; myocyte survival (Trypan blue exclusion and apoptosis by TUNEL) and glutathione content were evaluated. The number of dead and apoptotic myocytes increased five and 6.7-fold in HG and glutathione decreased by 48% (P < 0.05). NAC normalized cell death and apoptosis and prevented glutathione loss. NAC effectively protects from hyperglycemia-induced myocyte cell death and compensatory hypertrophy through direct scavenging of ROS and replenishment of the intracellular glutathione content.


Asunto(s)
Acetilcisteína/uso terapéutico , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Glucosa/farmacología , Miocitos Cardíacos/efectos de los fármacos , Acetilcisteína/farmacología , Animales , Antioxidantes/farmacología , Cardiomegalia/prevención & control , Núcleo Celular/química , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucosa/metabolismo , Glutatión/análisis , Glutatión/metabolismo , Ventrículos Cardíacos/citología , Miocardio/química , Miocardio/metabolismo , Miocitos Cardíacos/química , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo
3.
Proc Natl Acad Sci U S A ; 100(25): 14737-41, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14657342

RESUMEN

Thiols affect a variety of cell functions, an effect known as redox regulation. We show here that treatment (1-2 h) of cells with 0.1-5 mM N-acetyl-L-cysteine (NAC) increases surface protein thiol expression in human peripheral blood mononuclear cells. This effect is not associated with changes in cellular glutathione (GSH) and is also observed with a non-GSH precursor thiol N-acetyl-D-cysteine or with GSH itself, which is not cell-permeable, suggesting a direct reducing action. NAC did not augment protein SH in the cytosol, indicating that they are already maximally reduced under normal, nonstressed, conditions. By using labeling with a non permeable, biotinylated SH reagent followed by two-dimensional gel electrophoresis and analysis by MS, we identified some of the proteins associated with the membrane that are reduced by NAC. These proteins include the following: integrin alpha-4, myosin heavy chain (nonmuscle type A), myosin light-chain alkali (nonmuscle isoform), and beta-actin. NAC pretreatment augmented integrin alpha-4-dependent fibronectin adhesion and aggregation of Jurkat cells without changing its expression by fluorescence-activated cell sorter, suggesting that reduction of surface disulfides can affect proteins function. We postulate that some of the activities of NAC or other thiol antioxidants may not only be due to free radical scavenging or increase of intracellular GSH and subsequent effects on transcription factors, but could modify the redox state of functional membrane proteins with exofacial SH critical for their activity.


Asunto(s)
Integrina alfa4/fisiología , Acetilcisteína/química , Actinas/metabolismo , Adhesión Celular , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Relación Dosis-Respuesta a Droga , Electroforesis , Electroforesis en Gel Bidimensional , Radicales Libres , Glutatión/metabolismo , Humanos , Integrina alfa4/metabolismo , Células Jurkat , Leucocitos Mononucleares/metabolismo , Espectrometría de Masas , Cadenas Pesadas de Miosina/química , Cadenas Ligeras de Miosina/química , Oxidación-Reducción , Proteoma , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Compuestos de Sulfhidrilo , Factores de Tiempo
4.
J Exp Med ; 198(6): 971-5, 2003 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-12975460

RESUMEN

Ischemic brain injury resulting from stroke arises from primary neuronal losses and by inflammatory responses. Previous studies suggest that erythropoietin (EPO) attenuates both processes. Although EPO is clearly antiapoptotic for neurons after experimental stroke, it is unknown whether EPO also directly modulates EPO receptor (EPO-R)-expressing glia, microglia, and other inflammatory cells. In these experiments, we show that recombinant human EPO (rhEPO; 5,000 U/kg body weight, i.p.) markedly reduces astrocyte activation and the recruitment of leukocytes and microglia into an infarction produced by middle cerebral artery occlusion in rats. In addition, ischemia-induced production of the proinflammatory cytokines tumor necrosis factor, interleukin 6, and monocyte chemoattractant protein 1 concentration is reduced by >50% after rhEPO administration. Similar results were also observed in mixed neuronal-glial cocultures exposed to the neuronal-selective toxin trimethyl tin. In contrast, rhEPO did not inhibit cytokine production by astrocyte cultures exposed to neuronal homogenates or modulate the response of human peripheral blood mononuclear cells, rat glial cells, or the brain to lipopolysaccharide. These findings suggest that rhEPO attenuates ischemia-induced inflammation by reducing neuronal death rather than by direct effects upon EPO-R-expressing inflammatory cells.


Asunto(s)
Apoptosis/fisiología , Isquemia Encefálica/inmunología , Citocinas/biosíntesis , Eritropoyetina/fisiología , Inflamación/metabolismo , Neuronas/metabolismo , Animales , Apoptosis/inmunología , Isquemia Encefálica/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Eritropoyetina/farmacología , Humanos , Infarto de la Arteria Cerebral Media , Inflamación/inmunología , Lipopolisacáridos/farmacología , Masculino , Neuroglía/citología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuronas/citología , Fármacos Neuroprotectores/metabolismo , Ratas , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes/farmacología , Factor de Necrosis Tumoral alfa/metabolismo
5.
Mol Immunol ; 38(10): 773-80, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11841837

RESUMEN

We show here that exposure to oxidative stress induces glutathione (GSH) modification of protein cysteinyl residues (glutathionylation) in T cell blasts. Treating the cells with the oxidant diamide induces thiolation of a series of proteins that can be detected by 2D electrophoresis when 35S-cysteine is used to label the intracellular GSH pool. This thiolation is reversible, proteins are rapidly dethiolated and GSH is released from proteins once the oxidants are washed and the cells are allowed to recover. Dethiolation is dependent on the availability of GSH and thiols, since it is inhibited by GSH-depleting agents and improved by N-acetyl-L-cysteine (NAC). The capacity of these agents to reverse glutathionylation is diminished in T cell blasts infected in vitro with HIV, which is known to cause oxidative stress. Consistent with these findings, the activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an enzyme known to be inhibited by glutathionylation, is inhibited in diamide-treated cells and recovers rapidly when cells are allowed to dethiolate. Further, GAPDH activity is diminished by GSH-depleting agents and augmented by NAC. Thus, reversible glutathionylation of proteins can rapidly shift the activity of a key metabolic enzyme and thereby result in dramatic, reversible changes in cellular metabolism.


Asunto(s)
Glutatión/metabolismo , Infecciones por VIH/sangre , Estrés Oxidativo , Proteínas/metabolismo , Linfocitos T/metabolismo , Acetilcisteína , Diamida/química , Diamida/metabolismo , Glutatión/química , Humanos , Proteínas/química , Compuestos de Sulfhidrilo , Linfocitos T/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA