Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cell Reports ; 19(5): 673-688, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38579709

RESUMEN

Maintenance of mitochondrial function plays a crucial role in the regulation of muscle stem cell (MuSC), but the underlying mechanisms remain ill defined. In this study, we monitored mitophagy in MuSCS under various myogenic states and examined the role of PINK1 in maintaining regenerative capacity. Results indicate that quiescent MuSCs actively express mitophagy genes and exhibit a measurable mitophagy flux and prominent mitochondrial localization to autophagolysosomes, which become rapidly decreased during activation. Genetic disruption of Pink1 in mice reduces PARKIN recruitment to mitochondria and mitophagy in quiescent MuSCs, which is accompanied by premature activation/commitment at the expense of self-renewal and progressive loss of muscle regeneration, but unhindered proliferation and differentiation capacity. Results also show that impaired fate decisions in PINK1-deficient MuSCs can be restored by scavenging excess mitochondrial ROS. These data shed light on the regulation of mitophagy in MuSCs and position PINK1 as an important regulator of their mitochondrial properties and fate decisions.


Asunto(s)
Diferenciación Celular , Mitofagia , Proteínas Quinasas , Regeneración , Células Madre , Animales , Mitofagia/genética , Proteínas Quinasas/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/deficiencia , Ratones , Diferenciación Celular/genética , Células Madre/metabolismo , Células Madre/citología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/deficiencia , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/citología , Especies Reactivas de Oxígeno/metabolismo , Desarrollo de Músculos/genética , Proliferación Celular
2.
iScience ; 27(3): 109164, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38414856

RESUMEN

Myogenic differentiation is integral for the regeneration of skeletal muscle following tissue damage. Though high-energy post-mitotic muscle relies predominantly on mitochondrial respiration, the importance of mitochondrial remodeling in enabling muscle differentiation and the players involved are not fully known. Here we show that the mitochondrial fusion protein OPA1 is essential for muscle differentiation. Our study demonstrates that OPA1 loss or inhibition, through genetic and pharmacological means, abolishes in vivo muscle regeneration and in vitro myotube formation. We show that both the inhibition and genetic deletion of OPA1 prevent the early onset metabolic switch required to drive myoblast differentiation. In addition, we observe an OPA1-dependent upregulation of the supercomplex assembly factor, SCAF1, at the onset of differentiation. Importantly, preventing the upregulation of SCAF1, through OPA1 loss or siRNA-mediated SCAF1 knockdown, impairs metabolic reprogramming and muscle differentiation. These findings reveal the integral role of OPA1 and mitochondrial reprogramming at the onset of myogenic differentiation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA