Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Inflamm Bowel Dis ; 27(Suppl 2): S1-S16, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34791292

RESUMEN

Despite progress in recent decades, patients with inflammatory bowel diseases face many critical unmet needs, demonstrating the limitations of available treatment options. Addressing these unmet needs will require interventions targeting multiple aspects of inflammatory bowel disease pathology, including disease drivers that are not targeted by available therapies. The vast majority of late-stage investigational therapies also focus primarily on a narrow range of fundamental mechanisms. Thus, there is a pressing need to advance to clinical stage differentiated investigational therapies directly targeting a broader range of key mechanistic drivers of inflammatory bowel diseases. In addition, innovations are critically needed to enable treatments to be tailored to the specific underlying abnormal biological pathways of patients; interventions with improved safety profiles; biomarkers to develop prognostic, predictive, and monitoring tests; novel devices for nonpharmacological approaches such as minimally invasive monitoring; and digital health technologies. To address these needs, the Crohn's & Colitis Foundation launched IBD Ventures, a venture philanthropy-funding mechanism, and IBD Innovate®, an innovative, product-focused scientific conference. This special IBD Innovate® supplement is a collection of articles reflecting the diverse and exciting research and development that is currently ongoing in the inflammatory bowel disease field to deliver innovative and differentiated products addressing critical unmet needs of patients. Here, we highlight the pipeline of new product opportunities currently advancing at the preclinical and early clinical development stages. We categorize and describe novel and differentiated potential product opportunities based on their potential to address the following critical unmet patient needs: (1) biomarkers for prognosis of disease course and prediction/monitoring of treatment response; (2) restoration of eubiosis; (3) restoration of barrier function and mucosal healing; (4) more effective and safer anti-inflammatories; (5) neuromodulatory and behavioral therapies; (6) management of disease complications; and (7) targeted drug delivery.


We highlight the pipeline of investigational therapies, diagnostics, and devices with potential to address pressing unmet needs of patients with inflammatory bowel diseases, including biomarkers for prognosis and treatment response, restoration of eubiosis and mucosal healing, neuromodulation, and improved control of inflammation and disease complications.


Asunto(s)
Antiinflamatorios/uso terapéutico , Necesidades y Demandas de Servicios de Salud , Inmunosupresores/uso terapéutico , Enfermedades Inflamatorias del Intestino/terapia , Biomarcadores/sangre , Colitis , Enfermedad de Crohn , Humanos
3.
Proc Natl Acad Sci U S A ; 116(20): 10019-10024, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036664

RESUMEN

The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master suppressor of beneficial microglial function, and myeloid EP2 signaling ablation reduces pathology in models of inflammatory neurodegeneration. Here, we investigated the role of PGE2 EP2 signaling in a model of stroke in which the initial cerebral ischemic event is followed by an extended poststroke inflammatory response. Myeloid lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice attenuated brain infiltration of Cd11b+CD45hi macrophages and CD45+Ly6Ghi neutrophils, indicating that inflammatory EP2 signaling participates in the poststroke immune response. Inducible global deletion of the EP2 receptor in adult ROSA26-CreERT2 (ROSACreER);EP2lox/lox mice also reduced brain myeloid cell trafficking but additionally reduced stroke severity, suggesting that nonimmune EP2 receptor-expressing cell types contribute to cerebral injury. EP2 receptor expression was highly induced in neurons in the ischemic hemisphere, and postnatal deletion of the neuronal EP2 receptor in Thy1Cre;EP2lox/lox mice reduced cerebral ischemic injury. These findings diverge from previous studies of congenitally null EP2 receptor mice where a global deletion increases cerebral ischemic injury. Moreover, ROSACreER;EP2lox/lox mice, unlike EP2-/- mice, exhibited normal learning and memory, suggesting a confounding effect from congenital EP2 receptor deletion. Taken together with a precedent that inhibition of EP2 signaling is protective in inflammatory neurodegeneration, these data lend support to translational approaches targeting the EP2 receptor to reduce inflammation and neuronal injury that occur after stroke.


Asunto(s)
Isquemia Encefálica/metabolismo , Dinoprostona/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Animales , Isquemia Encefálica/inmunología , Isquemia Encefálica/prevención & control , Cognición , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Femenino , Inmunidad Innata , Masculino , Ratones Endogámicos C57BL , Células Mieloides/fisiología , Neuronas/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/antagonistas & inhibidores
4.
Biochim Biophys Acta ; 1860(11 Pt A): 2345-2354, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27392942

RESUMEN

BACKGROUND: In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS: Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS: Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Triptófano Oxigenasa/metabolismo , Animales , Encéfalo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Inflamación/etiología , Inflamación/metabolismo , Quinurenina/sangre , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Triptófano Oxigenasa/genética
5.
J Huntingtons Dis ; 1(1): 107-18, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23097680

RESUMEN

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD.


Asunto(s)
Complemento C3/genética , Complemento C3/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...