Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nat Commun ; 15(1): 5833, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992033

RESUMEN

Arthropod-borne viruses represent a crucial public health threat. Current arboviral serology assays are either labor intensive or incapable of distinguishing closely related viruses, and many zoonotic arboviruses that may transition to humans lack any serologic assays. In this study, we present a programmable phage display platform, ArboScan, that evaluates antibody binding to overlapping peptides that represent the proteomes of 691 human and zoonotic arboviruses. We confirm that ArboScan provides detailed antibody binding information from animal sera, human sera, and an arthropod blood meal. ArboScan identifies distinguishing features of antibody responses based on exposure history in a Colombian cohort of Zika patients. Finally, ArboScan details epitope level information that rapidly identifies candidate epitopes with potential protective significance. ArboScan thus represents a resource for characterizing human and animal arbovirus antibody responses at cohort scale.


Asunto(s)
Anticuerpos Antivirales , Arbovirus , Humanos , Arbovirus/inmunología , Arbovirus/aislamiento & purificación , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Péptidos/inmunología , Péptidos/química , Infección por el Virus Zika/virología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/sangre , Virus Zika/inmunología , Epítopos/inmunología , Pruebas Serológicas/métodos , Infecciones por Arbovirus/virología , Infecciones por Arbovirus/inmunología , Proteoma , Colombia , Femenino , Biblioteca de Péptidos , Técnicas de Visualización de Superficie Celular , Masculino
2.
Nat Biotechnol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956325

RESUMEN

Antigen discovery technologies have largely focused on major histocompatibility complex (MHC) class I-restricted human T cell receptors (TCRs), leaving methods for MHC class II-restricted and mouse TCR reactivities relatively undeveloped. Here we present TCR mapping of antigenic peptides (TCR-MAP), an antigen discovery method that uses a synthetic TCR-stimulated circuit in immortalized T cells to activate sortase-mediated tagging of engineered antigen-presenting cells (APCs) expressing processed peptides on MHCs. Live, tagged APCs can be directly purified for deconvolution by sequencing, enabling TCRs with unknown specificity to be queried against barcoded peptide libraries in a pooled screening context. TCR-MAP accurately captures self-reactivities or viral reactivities with high throughput and sensitivity for both MHC class I-restricted and class II-restricted TCRs. We elucidate problematic cross-reactivities of clinical TCRs targeting the cancer/testis melanoma-associated antigen A3 and discover targets of myocarditis-inciting autoreactive T cells in mice. TCR-MAP has the potential to accelerate T cell antigen discovery efforts in the context of cancer, infectious disease and autoimmunity.

3.
bioRxiv ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38854075

RESUMEN

Animal venoms, distinguished by their unique structural features and potent bioactivities, represent a vast and relatively untapped reservoir of therapeutic molecules. However, limitations associated with extracting or expressing large numbers of individual venoms and venom-like molecules have precluded their therapeutic evaluation via high throughput screening. Here, we developed an innovative computational approach to design a highly diverse library of animal venoms and "metavenoms". We employed programmable M13 hyperphage display to preserve critical disulfide-bonded structures for highly parallelized single-round biopanning with quantitation via high-throughput DNA sequencing. Our approach led to the discovery of Kunitz type domain containing proteins that target the human itch receptor Mas-related G protein-coupled receptor X4 (MRGPRX4), which plays a crucial role in itch perception. Deep learning-based structural homology mining identified two endogenous human homologs, tissue factor pathway inhibitor (TFPI) and serine peptidase inhibitor, Kunitz type 2 (SPINT2), which exhibit agonist-dependent potentiation of MRGPRX4. Highly multiplexed screening of animal venoms and metavenoms is therefore a promising approach to uncover new drug candidates.

4.
Nat Commun ; 15(1): 1577, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383452

RESUMEN

We investigate a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To cover large antigenic spaces, we develop Dolphyn, a method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn compresses the size of a peptide library by 78% compared to traditional tiling, increasing the antibody-reactive peptides from 10% to 31%. We find that the immune system develops antibodies to human gut bacteria-infecting viruses, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Humanos , Epítopos , Secuencia de Aminoácidos , Péptidos/genética , Anticuerpos , Bacteriófagos/genética , Mapeo Epitopo/métodos
5.
J Infect Dis ; 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38019656

RESUMEN

Kidney transplant recipients (KTRs) develop decreased antibody titers to SARS-CoV-2 vaccination compared to healthy controls (HCs), but whether KTRs generate antibodies against key epitopes associated with neutralization is unknown. Plasma from 78 KTRs from a clinical trial of third doses of SARS-CoV-2 vaccines and 12 HCs underwent phage display immunoprecipitation and sequencing (PhIP-Seq) to map antibody responses against SARS-CoV-2. KTRs had lower antibody reactivity to SARS-CoV-2 than HCs, but KTRs and HCs recognized similar epitopes associated with neutralization. Thus, epitope gaps in antibody breadth of KTRs are unlikely responsible for decreased efficacy of SARS-CoV-2 vaccines in this immunosuppressed population.

6.
Front Public Health ; 11: 1212018, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808979

RESUMEN

Introduction: Bats are important providers of ecosystem services such as pollination, seed dispersal, and insect control but also act as natural reservoirs for virulent zoonotic viruses. Bats host multiple viruses that cause life-threatening pathology in other animals and humans but, themselves, experience limited pathological disease from infection. Despite bats' importance as reservoirs for several zoonotic viruses, we know little about the broader viral diversity that they host. Bat virus surveillance efforts are challenged by difficulties of field capture and the limited scope of targeted PCR- or ELISA-based molecular and serological detection. Additionally, virus shedding is often transient, thus also limiting insights gained from nucleic acid testing of field specimens. Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a broad serological tool used previously to comprehensively profile viral exposure history in humans, offers an exciting prospect for viral surveillance efforts in wildlife, including bats. Methods: Here, for the first time, we apply PhIP-Seq technology to bat serum, using a viral peptide library originally designed to simultaneously assay exposures to the entire human virome. Results: Using VirScan, we identified past exposures to 57 viral genera-including betacoronaviruses, henipaviruses, lyssaviruses, and filoviruses-in semi-captive Pteropus alecto and to nine viral genera in captive Eonycteris spelaea. Consistent with results from humans, we find that both total peptide hits (the number of enriched viral peptides in our library) and the corresponding number of inferred past virus exposures in bat hosts were correlated with poor bat body condition scores and increased with age. High and low body condition scores were associated with either seropositive or seronegative status for different viruses, though in general, virus-specific age-seroprevalence curves defied assumptions of lifelong immunizing infection, suggesting that many bat viruses may circulate via complex transmission dynamics. Discussion: Overall, our work emphasizes the utility of applying biomedical tools, like PhIP-Seq, first developed for humans to viral surveillance efforts in wildlife, while highlighting opportunities for taxon-specific improvements.


Asunto(s)
Quirópteros , Reservorios de Enfermedades , Animales , Humanos , Ecosistema , Estudios Seroepidemiológicos , Zoonosis
7.
Cell Rep Methods ; 3(10): 100619, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37883924

RESUMEN

High-dimensional flow cytometry is the gold standard to study the human immune system in large cohorts. However, large sample sizes increase inter-experimental variation because of technical and experimental inaccuracies introduced by batch variability. Our high-throughput sample processing pipeline in combination with 28-color flow cytometry focuses on increased throughput (192 samples/experiment) and high reproducibility. We implemented quality control checkpoints to reduce technical and experimental variation. Finally, we integrated FlowSOM clustering to facilitate automated data analysis and demonstrate the reproducibility of our pipeline in a study with 3,357 samples. We reveal age-associated immune dynamics in 2,300 individuals, signified by decreasing T and B cell subsets with age. In addition, by combining genetic analyses, our approach revealed unique immune signatures associated with a single nucleotide polymorphism (SNP) that abrogates CD45 isoform splicing. In summary, we provide a versatile and reliable high-throughput, flow cytometry-based pipeline for immune discovery and exploration in large cohorts.


Asunto(s)
Subgrupos de Linfocitos B , Leucocitos , Humanos , Inmunofenotipificación , Reproducibilidad de los Resultados , Citometría de Flujo/métodos
8.
Cell Rep Methods ; 3(10): 100600, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37776855

RESUMEN

Assays linking cellular phenotypes with T cell or B cell antigen receptor sequences are crucial for characterizing adaptive immune responses. Existing methodologies are limited by low sample throughput and high cost. Here, we present INtraCEllular Reverse Transcription with Sorting and sequencing (INCERTS), an approach that combines molecular indexing of receptor repertoires within intact cells and fluorescence-activated cell sorting (FACS). We demonstrate that INCERTS enables efficient processing of millions of cells from pooled human peripheral blood mononuclear cell (PBMC) samples while retaining robust association between T cell receptor (TCR) sequences and cellular phenotypes. We used INCERTS to discover antigen-specific TCRs from patients with cancer immunized with a novel mutant KRAS peptide vaccine. After ex vivo stimulation, 28 uniquely barcoded samples were pooled prior to FACS into peptide-reactive and non-reactive CD4+ and CD8+ populations. Combining complementary patient-matched single-cell RNA sequencing (scRNA-seq) data enabled retrieval of full-length, paired TCR alpha and beta chain sequences for future validation of therapeutic utility.


Asunto(s)
Leucocitos Mononucleares , Transcripción Reversa , Humanos , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
9.
Front Immunol ; 14: 1178520, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744365

RESUMEN

Background: High HIV viral load (VL) is associated with increased transmission risk and faster disease progression. HIV controllers achieve viral suppression without antiretroviral (ARV) treatment. We evaluated viremic control in a community-randomized trial with >48,000 participants. Methods: A massively multiplexed antibody profiling system, VirScan, was used to quantify pre- and post-infection antibody reactivity to HIV peptides in 664 samples from 429 participants (13 controllers, 135 viremic non-controllers, 64 other non-controllers, 217 uninfected persons). Controllers had VLs <2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit and one year later. Viremic non-controllers had VLs 2,000 copies/mL with no ARV drugs detected at the first HIV-positive visit. Other non-controllers had either ARV drugs detected at the first HIV-positive visit (n=47) or VLs <2,000 copies/mL with no ARV drugs detected at only one HIV-positive visit (n=17). Results: We identified pre-infection HIV antibody reactivities that correlated with post-infection VL. Pre-infection reactivity to an epitope in the HR2 domain of gp41 was associated with controller status and lower VL. Pre-infection reactivity to an epitope in the C2 domain of gp120 was associated with non-controller status and higher VL. Different patterns of antibody reactivity were observed over time for these two epitopes. Conclusion: These studies suggest that pre-infection HIV antibodies are associated with controller status and modulation of HIV VL. These findings may inform research on antibody-based interventions for HIV treatment.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Carga Viral , Anticuerpos Anti-VIH , Antirretrovirales/uso terapéutico , Epítopos , Viremia/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico
10.
bioRxiv ; 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37577562

RESUMEN

We investigated a relatively underexplored component of the gut-immune axis by profiling the antibody response to gut phages using Phage Immunoprecipitation Sequencing (PhIP-Seq). To enhance this approach, we developed Dolphyn, a novel method that uses machine learning to select peptides from protein sets and compresses the proteome through epitope-stitching. Dolphyn improves the fraction of gut phage library peptides bound by antibodies from 10% to 31% in healthy individuals, while also reducing the number of synthesized peptides by 78%. In our study on gut phages, we discovered that the immune system develops antibodies to bacteria-infecting viruses in the human gut, particularly E.coli-infecting Myoviridae. Cost-effective PhIP-Seq libraries designed with Dolphyn enable the assessment of a wider range of proteins in a single experiment, thus facilitating the study of the gut-immune axis.

11.
Cell Rep ; 42(8): 112993, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590141

RESUMEN

CD8+ T cells mediate acute rejection of allografts, which threatens the long-term survival of transplanted organs. Using MHC class I tetramers, we find that allogeneic CD8+ T cells are present at an elevated naive precursor frequency relative to other epitopes, only modestly increase in number after grafting, and maintain high T cell receptor diversity throughout the immune response. While antigen-specific effector CD8+ T cells poorly express the canonical effector marker KLRG-1, expression of the activated glycoform of CD43 defines potent effectors after transplantation. Activated CD43+ effector T cells maintain high expression of the coreceptor induced T cell costimulator (ICOS) in the presence of CTLA-4 immunoglobulin (Ig), and dual CTLA-4 Ig/anti-ICOS treatment prolongs graft survival. These data demonstrate that graft-specific CD8+ T cells have a distinct response profile relative to anti-pathogen CD8+ T cells and that CD43 and ICOS are critical surface receptors that define potent effector CD8+ T cell populations that form after transplantation.


Asunto(s)
Anticuerpos , Linfocitos T CD8-positivos , Antígeno CTLA-4 , Trasplante Homólogo , Epítopos , Interleucina-2
12.
Ann Rheum Dis ; 82(2): 246-252, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36008132

RESUMEN

OBJECTIVES: In dermatomyositis (DM), autoantibodies are associated with unique clinical phenotypes. For example, anti-TIF1γ autoantibodies are associated with an increased risk of cancer. The purpose of this study was to discover novel DM autoantibodies. METHODS: Phage ImmunoPrecipitation Sequencing using sera from 43 patients with DM suggested that transcription factor Sp4 is a novel autoantigen; this was confirmed by showing that patient sera immunoprecipitated full-length Sp4 protein. Sera from 371 Johns Hopkins patients with myositis (255 with DM, 28 with antisynthetase syndrome, 40 with immune-mediated necrotising myopathy, 29 with inclusion body myositis and 19 with polymyositis), 80 rheumatological disease controls (25 with Sjogren's syndrome, 25 with systemic lupus erythematosus and 30 with rheumatoid arthritis (RA)) and 200 healthy comparators were screened for anti-SP4 autoantibodies by ELISA. A validation cohort of 46 anti-TIF1γ-positive patient sera from the University of Pittsburgh was also screened for anti-Sp4 autoantibodies. RESULTS: Anti-Sp4 autoantibodies were present in 27 (10.5%) patients with DM and 1 (3.3%) patient with RA but not in other clinical groups. In patients with DM, 96.3% of anti-Sp4 autoantibodies were detected in those with anti-TIF1γ autoantibodies. Among 26 TIF1γ-positive patients with anti-Sp4 autoantibodies, none (0%) had cancer. In contrast, among 35 TIF1γ-positive patients without anti-Sp4 autoantibodies, 5 (14%, p=0.04) had cancer. In the validation cohort, among 15 TIF1γ-positive patients with anti-Sp4 autoantibodies, 2 (13.3%) had cancer. By comparison, among 31 TIF1γ-positive patients without anti-Sp4 autoantibodies, 21 (67.7%, p<0.001) had cancer. CONCLUSIONS: Anti-Sp4 autoantibodies appear to identify a subgroup of anti-TIF1γ-positive DM patients with lower cancer risk.


Asunto(s)
Artritis Reumatoide , Dermatomiositis , Miositis , Neoplasias , Humanos , Autoanticuerpos , Factor de Transcripción Sp4
13.
Cell Rep ; 41(12): 111754, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36543141

RESUMEN

Anelloviruses represent a major constituent of the commensal human virome; however, little is known about their immunobiology. Here, we present "AnelloScan," a T7 phage library representing the open reading frame 1 (ORF1), ORF2, ORF3, and torque teno virus (TTV)-derived apoptosis-inducing protein (TAIP) sequences of more than 800 human anelloviruses and profile the antibody reactivities of serum samples from a cross-sectional cohort of 156 subjects by using phage-immunoprecipitation sequencing (PhIP-Seq). A majority of anellovirus peptides are not reactive in any of the subjects tested (n = ∼28,000; ∼85% of the library). Antibody-reactive peptides are largely restricted to the C-terminal region of the capsid protein ORF1. Moreover, using a longitudinal cohort of matched blood-transfusion donors and recipients, we find that most transmitted anelloviruses do not elicit a detectable antibody reactivity in the recipient and that the remainder elicit delayed responses appearing ∼100-150 days after transfusion.


Asunto(s)
Anelloviridae , Torque teno virus , Humanos , Formación de Anticuerpos , Estudios Transversales , Torque teno virus/metabolismo , Proteínas de la Cápside/metabolismo
14.
BMC Infect Dis ; 22(1): 838, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368950

RESUMEN

BACKGROUND: Multi-assay algorithms (MAAs) are used to estimate population-level HIV incidence and identify individuals with recent infection. Many MAAs use low viral load (VL) as a biomarker for long-term infection. This could impact incidence estimates in settings with high rates of early HIV treatment initiation. We evaluated the performance of two MAAs that do not include VL. METHODS: Samples were collected from 219 seroconverters (infected < 1 year) and 4376 non-seroconverters (infected > 1 year) in the HPTN 071 (PopART) trial; 28.8% of seroconverter samples and 73.2% of non-seroconverter samples had VLs ≤ 400 copies/mL. Samples were tested with the Limiting Antigen Avidity assay (LAg) and JHU BioRad-Avidity assays. Antibody reactivity to two HIV peptides was measured using the MSD U-PLEX assay. Two MAAs were evaluated that do not include VL: a MAA that includes the LAg-Avidity assay and BioRad-Avidity assay (LAg + BR) and a MAA that includes the LAg-Avidity assay and two peptide biomarkers (LAg + PepPair). Performance of these MAAs was compared to a widely used MAA that includes LAg and VL (LAg + VL). RESULTS: The incidence estimate for LAg + VL (1.29%, 95% CI: 0.97-1.62) was close to the observed longitudinal incidence (1.34% 95% CI: 1.17-1.53). The incidence estimates for the other two MAAs were higher (LAg + BR: 2.56%, 95% CI 2.01-3.11; LAg + PepPair: 2.84%, 95% CI: 1.36-4.32). LAg + BR and LAg + PepPair also misclassified more individuals infected > 2 years as recently infected than LAg + VL (1.2% [42/3483 and 1.5% [51/3483], respectively, vs. 0.2% [6/3483]). LAg + BR classified more seroconverters as recently infected than LAg + VL or LAg + PepPair (80 vs. 58 and 50, respectively) and identified ~ 25% of virally suppressed seroconverters as recently infected. CONCLUSIONS: The LAg + VL MAA produced a cross-sectional incidence estimate that was closer to the longitudinal estimate than two MAAs that did not include VL. The LAg + BR MAA classified the greatest number of individual seroconverters as recently infected but had a higher false recent rate.


Asunto(s)
Infecciones por VIH , Humanos , Estudios Transversales , Incidencia , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Técnicas para Inmunoenzimas , Antirretrovirales/uso terapéutico , Carga Viral , Algoritmos , Biomarcadores
15.
Biology (Basel) ; 11(7)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-36101433

RESUMEN

Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.

16.
BMC Genomics ; 23(1): 654, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109689

RESUMEN

Phage ImmunoPrecipitation Sequencing (PhIP-Seq) is a recently developed technology to assess antibody reactivity, quantifying antibody binding towards hundreds of thousands of candidate epitopes. The output from PhIP-Seq experiments are read count matrices, similar to RNA-Seq data; however some important differences do exist. In this manuscript we investigated whether the publicly available method edgeR (Robinson et al., Bioinformatics 26(1):139-140, 2010) for normalization and analysis of RNA-Seq data is also suitable for PhIP-Seq data. We find that edgeR is remarkably effective, but improvements can be made and introduce a Bayesian framework specifically tailored for data from PhIP-Seq experiments (Bayesian Enrichment Estimation in R, BEER).


Asunto(s)
Bacteriófagos , Anticuerpos , Bacteriófagos/genética , Teorema de Bayes , Epítopos , Perfilación de la Expresión Génica/métodos , Inmunoprecipitación , Análisis de Secuencia de ARN/métodos
17.
Bioinformatics ; 38(19): 4647-4649, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35959988

RESUMEN

SUMMARY: Because of their high abundance, easy accessibility in peripheral blood, and relative stability ex vivo, antibodies serve as excellent records of environmental exposures and immune responses. Phage Immuno-Precipitation Sequencing (PhIP-Seq) is the most efficient technique available for assessing antibody binding to hundreds of thousands of peptides at a cohort scale. PhIP-Seq is a high-throughput approach for assessing antibody reactivity to hundreds of thousands of candidate epitopes. Accurate detection of weakly reactive peptides is particularly important for characterizing the development and decline of antibody responses. Here, we present BEER (Bayesian Enrichment Estimation in R), a software package specifically developed for the quantification of peptide reactivity from PhIP-Seq experiments. BEER implements a hierarchical model and produces posterior probabilities for peptide reactivity and a fold change estimate to quantify the magnitude. BEER also offers functionality to infer peptide reactivity based on the edgeR package, though the improvement in speed is offset by slightly lower sensitivity compared to the Bayesian approach, specifically for weakly reactive peptides. AVAILABILITY AND IMPLEMENTATION: BEER is implemented in R and freely available from the Bioconductor repository at https://bioconductor.org/packages/release/bioc/html/beer.html.


Asunto(s)
Cerveza , Programas Informáticos , Humanos , Teorema de Bayes , Anticuerpos , Péptidos
18.
mBio ; 13(4): e0183922, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856618

RESUMEN

Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Diversidad de Anticuerpos , Epítopos , Femenino , Centro Germinal , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Masculino , Ratones , Vacunas de Productos Inactivados
19.
Immunity ; 55(6): 1051-1066.e4, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35649416

RESUMEN

Microbial exposures are crucial environmental factors that impact healthspan by sculpting the immune system and microbiota. Antibody profiling via Phage ImmunoPrecipitation Sequencing (PhIP-Seq) provides a high-throughput, cost-effective approach for detecting exposure and response to microbial protein products. We designed and constructed a library of 95,601 56-amino acid peptide tiles spanning 14,430 proteins with "toxin" or "virulence factor" keyword annotations. We used PhIP-Seq to profile the antibodies of ∼1,000 individuals against this "ToxScan" library. In addition to enumerating immunodominant antibody epitopes, we studied the age-dependent stability of the ToxScan profile and used a genome-wide association study to find that the MHC-II locus modulates bacterial epitope selection. We detected previously described anti-flagellin antibody responses in a Crohn's disease cohort and identified an association between anti-flagellin antibodies and juvenile dermatomyositis. PhIP-Seq with the ToxScan library is thus an effective tool for studying the environmental determinants of health and disease at cohort scale.


Asunto(s)
Bacteriófagos , Biblioteca de Péptidos , Secuencia de Aminoácidos , Anticuerpos , Formación de Anticuerpos , Bacteriófagos/genética , Estudio de Asociación del Genoma Completo , Humanos , Epítopos Inmunodominantes , Prevalencia , Factores de Virulencia/genética
20.
Sci Transl Med ; 14(628): eabi9196, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044790

RESUMEN

Sporadic inclusion body myositis (IBM) is the most common acquired muscle disease in adults over age 50, yet it remains unclear whether the disease is primarily driven by T cell­mediated autoimmunity. IBM muscle biopsies display nuclear clearance and cytoplasmic aggregation of TDP-43 in muscle cells, a pathologic finding observed initially in neurodegenerative diseases, where nuclear loss of TDP-43 in neurons causes aberrant RNA splicing. Here, we show that loss of TDP-43­mediated splicing repression, as determined by inclusion of cryptic exons, occurs in skeletal muscle of subjects with IBM. Of 119 muscle biopsies tested, RT-PCR­mediated detection of cryptic exon inclusion was able to diagnose IBM with 84% sensitivity and 99% specificity. To determine the role of T cells in pathogenesis, we generated a xenograft model by transplanting human IBM muscle into the hindlimb of immunodeficient mice. Xenografts from subjects with IBM displayed robust regeneration of human myofibers and recapitulated both inflammatory and degenerative features of the disease. Myofibers in IBM xenografts showed invasion by human, oligoclonal CD8+ T cells and exhibited MHC-I up-regulation, rimmed vacuoles, mitochondrial pathology, p62-positive inclusions, and nuclear clearance and cytoplasmic aggregation of TDP-43, associated with cryptic exon inclusion. Reduction of human T cells within IBM xenografts by treating mice intraperitoneally with anti-CD3 (OKT3) suppressed MHC-I up-regulation. However, rimmed vacuoles and loss of TDP-43 function persisted. These data suggest that T cell depletion does not alter muscle degenerative pathology in IBM.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Miositis por Cuerpos de Inclusión , Miositis , Animales , Linfocitos T CD8-positivos , Proteínas de Unión al ADN/genética , Xenoinjertos , Humanos , Ratones , Músculo Esquelético/patología , Miositis/diagnóstico , Miositis/patología , Miositis por Cuerpos de Inclusión/diagnóstico , Miositis por Cuerpos de Inclusión/patología , Vacuolas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA