Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 12(10)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36290989

RESUMEN

As glucose biosensors play an important role in glycemic control, which can prevent the diabetic complications, the development of a glucose sensing platform is still in needed. Herein, the first proposal on the in-house fabricated paper-based screen-printed ionic liquid/graphene electrode (SPIL-GE) modified with MXene (Ti3C2Tx), prussian blue (PB), glucose oxidase (GOx), and Nafion is reported. The concentration of PB/Ti3C2Tx was optimized and the optimal detection potential of PB/Ti3C2Tx/GOx/Nafion/SPIL-GE is -0.05 V. The performance of PB/Ti3C2Tx/GOx/Nafion modified SPIL-GE was characterized by cyclic voltammetry and chronoamperometry technique. This paper-based platform integrated with nanomaterial composites were realized for glucose in the range of 0.0-15.0 mM with the correlation coefficient R2 = 0.9937. The limit of detection method and limit of quantification were 24.5 µM and 81.7 µM, respectively. In the method comparison, this PB/Ti3C2Tx/GOx/Nafion/SPIL-GE exhibits a good correlation with the reference hexokinase method. This novel glucose sensing platform can potentially be used for the good practice to enhance the sensitivity and open the opportunity to develop paper-based electroanalytical devices.


Asunto(s)
Técnicas Biosensibles , Grafito , Líquidos Iónicos , Nanocompuestos , Glucosa Oxidasa/química , Grafito/química , Hexoquinasa , Enzimas Inmovilizadas/química , Electrodos , Nanocompuestos/química , Técnicas Biosensibles/métodos , Glucosa , Técnicas Electroquímicas/métodos
2.
Anal Chim Acta ; 1207: 339807, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35491041

RESUMEN

Both the ABO and Rhesus (Rh) blood groups play crucial roles in blood transfusion medicine. Herein, we report a simple and low-cost paper-based analytical device (PAD) for phenotyping red blood cell (RBC) antigens. Using this Rh typing format, 5 Rh antigens on RBCs can be simultaneously detected and macroscopically visualized within 12 min. The proposed Rh phenotyping relies on the presence or absence of hemagglutination in the sample zones after immobilizing the antibodies targeting each Rh antigen. The PAD was optimized in terms of filter paper type, antibodies, and distance of the visualization zone. In this study, the optimal conditions were Whatman filter paper Grade 4; anti-D, -C, -E, -c, and -e antibodies; RBC suspension of 30%; and a visualization zone of 1 cm above the sample zone. The accuracy of simultaneously phenotyping the five Rh RBC antigens in the blood samples (n = 4692) was 99.19%, comparable with the accuracy of the gold-standard tube method used by blood bank laboratories in several regions of Thailand. Furthermore, decision making based on this method can be assisted by deep learning. After implementing a two-stage objective detection algorithm (YOLO v4-tiny) and classification model (DenseNet-201), the ambiguous images (n = 48) were interpreted with 100% accuracy. The PAD integrated with customized-region convolutional neural networks can reduce the interpretation discrepancies in RBC antigen phenotyping in any laboratory.


Asunto(s)
Antígenos de Grupos Sanguíneos , Aprendizaje Profundo , Anticuerpos , Antígenos , Eritrocitos , Sistema del Grupo Sanguíneo Rh-Hr
3.
Sensors (Basel) ; 21(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670868

RESUMEN

This paper proposes a combined strategy of using paper-based competitive immunochromatography and a near field communication (NFC) tag for wireless cotinine determination. The glucose oxidase labeled cotinine antibody specifically binds free cotinine in a sample, whereas the unoccupied antibody attached to BSA-cotinine at the test line on a lateral flow strip. The glucose oxidase on the strip and an assistant pad in the presence of glucose generated H2O2 and imposed the Ag oxidation on the modified electrode. This enabled monitoring of immunoreaction by either electrochemical measurement or wireless detection. Wireless sensing was realized for cotinine in the range of 100-1000 ng/mL (R2 = 0.96) in PBS medium. Undiluted urine samples from non-smokers exhibited an Ag-oxidation rate three times higher than the smoker's urine samples. For 1:8 diluted urine samples (smokers), the proposed paper-based competitive immunochromatography coupled with an enzyme-modified electrode differentiated positive and negative samples and exhibited cotinine discrimination at levels higher than 12 ng/mL. This novel sensing platform can potentially be combined with a smartphone as a reader unit.


Asunto(s)
Técnicas Biosensibles , Cromatografía de Afinidad , Cotinina , Cotinina/orina , Electrodos , Peróxido de Hidrógeno
4.
Sci Rep ; 9(1): 12948, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506441

RESUMEN

Massive integration of biosensors into design of Internet-of-Things (IoT) is vital for progress of healthcare. However, the integration of biosensors is challenging due to limited availability of battery-less biosensor designs. In this work, a combination of nanomaterials for wireless sensing of biological redox reactions is described. The design exploits silver nanoparticles (AgNPs) as part of the RFID tag antenna. We demonstrate that a redox enzyme, particularly, horseradish peroxidase (HRP), can convert AgNPs into AgCl in the presence of its substrate, hydrogen peroxide. This strongly changes the impedance of the tag. The presented example exploits gold nanoparticle (AuNP)-assisted electron transfer (ET) between AgNPs and HRP. We show that AuNP is a vital intermediate for establishing rapid ET between the enzyme and AgNPs. As an example, battery-less biosensor-RFID tag designs for H2O2 and glucose are demonstrated. Similar battery-less sensors can be constructed to sense redox reactions catalysed by other oxidoreductase enzymes, their combinations, bacteria or other biological and even non-biological catalysts. In this work, a fast and general route for converting a high number of redox reaction based sensors into battery-less sensor-RFID tags is described.

5.
Polymers (Basel) ; 11(3)2019 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-30960554

RESUMEN

Commercially available sorbent materials for solid-phase extraction are widely used in analytical laboratories. However, non-selective binding is a major obstacle for sample analysis. To overcome this problem, molecularly imprinted polymers (MIPs) were used as selective adsorbent materials prior to determining target analysts. In this study, the use of non-covalent molecularly imprinted polymers (MIPs) for cotinine adsorption on a paper-based scaffold was studied. Fiberglass paper was used as a paper scaffold for cotinine-selective MIP adsorption with the use of 0.5% agarose gel. The effects of salt, pH, sample matrix, and solvent on the cotinine adsorption and extraction process were investigated. Under optimal conditions, the adsorption isotherm of synthesized MIPs increased to 125.41 µg/g, whereas the maximum adsorption isotherm of non-imprinted polymers (NIPs) was stable at 42.86 µg/g. The ability of the MIP paper scaffold to absorb cotinine in water medium was approximately 1.8⁻2.8-fold higher than that of the NIP scaffold. From Scatchard analysis, two dissociation constants of MIPs were calculated to be 2.56 and 27.03 µM. Nicotine, myosmine, and N-nitrosonornicotine were used for selectivity testing, and the calculated selectivity factor of cotinine to nicotine, myosmine, and N-nitrosonornicotine was 1.56, 2.69, and 2.05, respectively. Overall, the MIP paper scaffold is promising for simple onsite sampling of cotinine and can be used to assess tobacco smoke exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA