Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Neurooncol Adv ; 6(1): vdad160, 2024.
Article En | MEDLINE | ID: mdl-38221979

Chronic oxidative stress plays a critical role in the development of brain malignancies due to the high rate of brain oxygen utilization and concomitant production of reactive oxygen species. The nuclear factor-erythroid-2-related factor 2 (NRF2), a master regulator of antioxidant signaling, is a key factor in regulating brain physiology and the development of age-related neurodegenerative diseases. Also, NRF2 is known to exert a protective antioxidant effect against the onset of oxidative stress-induced diseases, including cancer, along with its pro-oncogenic activities through regulating various signaling pathways and downstream target genes. In glioblastoma (GB), grade 4 glioma, tumor resistance, and recurrence are caused by the glioblastoma stem cell population constituting a small bulk of the tumor core. The persistence and self-renewal capacity of these cell populations is enhanced by NRF2 expression in GB tissues. This review outlines NRF2's dual involvement in cancer and highlights its regulatory role in human brain physiology and diseases, in addition to the development of primary brain tumors and therapeutic potential, with a focus on GB.

2.
EMBO Mol Med ; 14(12): e15343, 2022 12 07.
Article En | MEDLINE | ID: mdl-36278433

Lactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose. Lactate dehydrogenases (LDHA and LDHB), which we found spatially expressed in GB tissues, catalyze the interconversion of pyruvate and lactate. However, ablation of both LDH isoforms, but not only one, led to a reduction in tumor growth and an increase in mouse survival. Comparative transcriptomics and metabolomics revealed metabolic rewiring involving high oxidative phosphorylation (OXPHOS) in the LDHA/B KO group which sensitized tumors to cranial irradiation, thus improving mouse survival. When mice were treated with the antiepileptic drug stiripentol, which targets LDH activity, tumor growth decreased. Our findings unveil the complex metabolic network in which both LDHA and LDHB are integrated and show that the combined inhibition of LDHA and LDHB strongly sensitizes GB to therapy.


Brain Neoplasms , Glioblastoma , Lactate Dehydrogenases , Animals , Mice , Lactic Acid , Metabolomics , Glioblastoma/enzymology , Glioblastoma/pathology , Brain Neoplasms/enzymology , Brain Neoplasms/pathology
3.
Cancers (Basel) ; 14(15)2022 Aug 02.
Article En | MEDLINE | ID: mdl-35954433

Glioblastoma (GB) are the most frequent brain cancers. Aggressive growth and limited treatment options induce a median survival of 12-15 months. In addition to highly proliferative and invasive properties, GB cells show cancer-associated metabolic characteristics such as increased aerobic glycolysis. Pyruvate dehydrogenase (PDH) is a key enzyme complex at the crossroads between lactic fermentation and oxidative pathways, finely regulated by PDH kinases (PDHKs). PDHKs are often overexpressed in cancer cells to facilitate high glycolytic flux. We hypothesized that targeting PDHKs, by disturbing cancer metabolic homeostasis, would alter GB progression and render cells vulnerable to additional cancer treatment. Using patient databases, distinct expression patterns of PDHK1 and PDHK2 in GB tissues were obvious. To disturb protumoral glycolysis, we modulated PDH activity through the genetic or pharmacological inhibition of PDHK in patient-derived stem-like spheroids. Striking effects of PDHKs inhibition using dichloroacetate were observed in vitro on cell morphology and metabolism, resulting in increased intracellular ROS levels and decreased proliferation and invasion. In vivo findings confirmed a reduction in tumor size and better survival of mice implanted with PDHK1 and PDHK2 knockout cells. Adding a radiotherapeutic protocol further resulted in a reduction in tumor size and improved mouse survival in our model.

...