Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 10(7)2017 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-28773172

RESUMEN

Crystalline and preamorphized isotope multilayers are utilized to investigate the dependence of ion beam mixing in silicon (Si), germanium (Ge), and silicon germanium (SiGe) on the atomic structure of the sample, temperature, ion flux, and electrical doping by the implanted ions. The magnitude of mixing is determined by secondary ion mass spectrometry. Rutherford backscattering spectrometry in channeling geometry, Raman spectroscopy, and transmission electron microscopy provide information about the structural state after ion irradiation. Different temperature regimes with characteristic mixing properties are identified. A disparity in atomic mixing of Si and Ge becomes evident while SiGe shows an intermediate behavior. Overall, atomic mixing increases with temperature, and it is stronger in the amorphous than in the crystalline state. Ion-beam-induced mixing in Ge shows no dependence on doping by the implanted ions. In contrast, a doping effect is found in Si at higher temperature. Molecular dynamics simulations clearly show that ion beam mixing in Ge is mainly determined by the thermal spike mechanism. In the case of Si thermal spike, mixing prevails at low temperature whereas ion beam-induced enhanced self-diffusion dominates the atomic mixing at high temperature. The latter process is attributed to highly mobile Si di-interstitials formed under irradiation and during damage annealing.

2.
Nanoscale ; 9(21): 7169-7178, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28513716

RESUMEN

Efforts to realize thin-film solar cells on unconventional substrates face several obstacles in achieving good energy-conversion efficiency and integrating light-management into the solar cell design. In this report a technique to circumvent these obstacles is presented: transferability and an efficient light-harvesting scheme are combined for thin-film silicon solar cells by the incorporation of a NaCl layer. Amorphous silicon solar cells in p-i-n configuration are fabricated on reusable glass substrates coated with an interlayer of NaCl. Subsequently, the solar cells are detached from the substrate by dissolution of the sacrificial NaCl layer in water and then transferred onto a plastic sheet, with a resultant post-transfer efficiency of 9%. The light-trapping effect of the surface nanotextures originating from the NaCl layer on the overlying solar cell is studied theoretically and experimentally. The enhanced light absorption in the solar cells on NaCl-coated substrates leads to significant improvement in the photocurrent and energy-conversion efficiency in solar cells with both 350 and 100 nm thick absorber layers, compared to flat-substrate solar cells. Efficient transferable thin-film solar cells hold a vast potential for widespread deployment of off-grid photovoltaics and cost reduction.

3.
Nanoscale ; 8(23): 12035-46, 2016 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-27244247

RESUMEN

A new back-reflector architecture for light-management in thin-film solar cells is proposed that includes a morphologically smooth top surface with light-scattering microstructures buried within. The microstructures are pyramid shaped, fabricated on a planar reflector using TiO2 nanoparticles and subsequently covered with a layer of Si nanoparticles to obtain a flattened top surface, thus enabling growth of good quality thin-film solar cells. The optical properties of this back-reflector show high broadband haze parameter and wide angular distribution of diffuse light-scattering. The n-i-p amorphous silicon thin-film solar cells grown on such a back-reflector show enhanced light absorption resulting in improved external quantum efficiency. The benefit of the light trapping in those solar cells is evidenced by the gains in short-circuit current density and efficiency up to 15.6% and 19.3% respectively, compared to the reference flat solar cells. This improvement in the current generation in the solar cells grown on the flat-topped (buried pyramid) back-reflector is observed even when the irradiation takes place at large oblique angles of incidence. Finite-difference-time-domain simulation results of optical absorption and ideal short-circuit current density values agree well with the experimental findings. The proposed approach uses a low cost and simple fabrication technique and allows effective light manipulation by utilizing the optical properties of micro-scale structures and nanoscale constituent particles.

4.
Nanotechnology ; 23(8): 085202, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22293458

RESUMEN

This paper investigates the improved photo-current response obtained by depositing Al nanoparticles on top of a Si diode. Well defined Al nanodiscs with a diameter and height of 100 nm are produced on the surface of a Si diode using electron-beam lithography, and the change in photo-current generation is characterized. A blue shift of the photo-current response is demonstrated, substantially improving the relation between gains and losses compared to what is typically observed in similar schemes using Ag nanoparticles. Enhanced photo-current response is observed in diodes with Al particles on the surface at all wavelengths larger than ≈465 nm, thereby minimizing the losses in the blue range usually reported with Ag nanoparticles on the surface.


Asunto(s)
Aluminio/química , Suministros de Energía Eléctrica , Nanopartículas del Metal/química , Semiconductores , Silicio/química , Resonancia por Plasmón de Superficie/instrumentación , Aluminio/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Ensayo de Materiales , Nanopartículas del Metal/efectos de la radiación , Silicio/efectos de la radiación
5.
Nanotechnology ; 22(43): 435401, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21969305

RESUMEN

The decay dynamics of self-assembled germanium islands is studied by time-resolved fluorescence spectroscopy. The scaling behavior of the decay rate with the number of excitons in the islands is shown to agree with expectations for an Auger-recombination-dominated process in the asymptotic limit of high exciton numbers. The multi-excitonic decay time and spectral behavior are compared to theoretical estimates.

6.
ACS Nano ; 4(5): 2874-82, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20443575

RESUMEN

The interaction between dental pulp derived mesenchymal stem cells (DP-MSCs) and three different tantalum nanotopographies with and without a fibronectin coating is examined: sputter-coated tantalum surfaces with low surface roughness <0.2 nm, hut-nanostructured surfaces with a height of 2.9 +/- 0.6 nm and a width of 35 +/- 8 nm, and dome structures with a height of 13 +/- 2 nm and a width of 52 +/- 14 nm. Using ellipsometry, the adsorption and the availability of fibronectin cell-binding domains on the tantalum surfaces were examined, as well as cellular attachment, proliferation, and vinculin focal adhesion spot assembly on the respective surfaces. The results showed the highest fibronectin mass uptake on the hut structures, with a slightly higher availability of cell-binding domains and the most pronounced formation of vinculin focal adhesion spots as compared to the other surfaces. The proliferation of DP-MSCs was found to be significantly higher on dome and hut surfaces coated with fibronectin compared to the uncoated flat tantalum surfaces. Consequently, the results presented in this study indicate that fibronectin-coated nanotopographies with a vertical dimension of less than 5 nm influence cell adhesion. This rather interesting behavior is argued to originate from the more available fibronectin cell-binding domains observed on the hut structures.


Asunto(s)
Fibronectinas/química , Fibronectinas/farmacología , Nanoestructuras/química , Tantalio/química , Adsorción , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Pulpa Dental/citología , Adhesiones Focales/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Multimerización de Proteína/efectos de los fármacos , Estructura Cuaternaria de Proteína , Propiedades de Superficie , Vinculina/química , Vinculina/metabolismo , Adulto Joven
7.
J Phys Condens Matter ; 21(11): 115502, 2009 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-21693920

RESUMEN

The electronic and optical properties of the metallic bcc and ß-Sn phases of tin are studied using density functional theory. The effects of spin-orbit coupling are examined and significant splittings are found in the band structures for both phases. Based on ab initio band structures we calculate the anisotropic optical response of ß-Sn. Both intra- and interband contributions are included and the plasma frequencies for both the ordinary and extraordinary optical axis are calculated. The theoretical results are found to be in excellent agreement with experimental spectra for the anisotropic optical response. We identify the electronic transitions responsible for the dominant interband resonances in the near-infrared response.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA