Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Nutrients ; 16(5)2024 Feb 23.
Article En | MEDLINE | ID: mdl-38474754

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing healthcare problem with limited therapeutic options. Progress in this field depends on the availability of reliable preclinical models. Human precision-cut liver slices (PCLSs) have been employed to replicate the initiation of MASLD, but a comprehensive investigation into MASLD progression is still missing. This study aimed to extend the current incubation time of human PCLSs to examine different stages in MASLD. Healthy human PCLSs were cultured for up to 96 h in a medium enriched with high sugar, high insulin, and high fatty acids to induce MASLD. PCLSs displayed hepatic steatosis, characterized by accumulated intracellular fat. The development of hepatic steatosis appeared to involve a time-dependent impact on lipid metabolism, with an initial increase in fatty acid uptake and storage, and a subsequent down-regulation of lipid oxidation and secretion. PCLSs also demonstrated liver inflammation, including increased pro-inflammatory gene expression and cytokine production. Additionally, liver fibrosis was also observed through the elevated production of pro-collagen 1a1 and tissue inhibitor of metalloproteinase-1 (TIMP1). RNA sequencing showed that the tumor necrosis factor alpha (TNFα) signaling pathway and transforming growth factor beta (TGFß) signaling pathway were consistently activated, potentially contributing to the development of inflammation and fibrosis. In conclusion, the prolonged incubation of human PCLSs can establish a robust ex vivo model for MASLD, facilitating the identification and evaluation of potential therapeutic interventions.


Fatty Liver , Metabolic Diseases , Humans , Drug Evaluation, Preclinical , Tissue Inhibitor of Metalloproteinase-1 , Inflammation
2.
J Hepatol ; 80(3): 467-481, 2024 Mar.
Article En | MEDLINE | ID: mdl-37972658

BACKGROUND & AIMS: Metabolic dysfunction-associated steatohepatitis (MASH) is linked to insulin resistance and type 2 diabetes and marked by hepatic inflammation, microvascular dysfunction, and fibrosis, impairing liver function and aggravating metabolic derangements. The liver homeostatic interactions disrupted in MASH are still poorly understood. We aimed to elucidate the plasticity and changing interactions of non-parenchymal cells associated with advanced MASH. METHODS: We characterized a diet-induced mouse model of advanced MASH at single-cell resolution and validated findings by assaying chromatin accessibility, bioimaging murine and human livers, and via functional experiments in vivo and in vitro. RESULTS: The fibrogenic activation of hepatic stellate cells (HSCs) led to deterioration of a signaling module consisting of the bile acid receptor NR1H4/FXR and HSC-specific GS-protein-coupled receptors (GSPCRs) capable of preserving stellate cell quiescence. Accompanying HSC activation, we further observed the attenuation of HSC Gdf2 expression, and a MASH-associated expansion of a CD207-positive macrophage population likely derived from both incoming monocytes and Kupffer cells. CONCLUSION: We conclude that HSC-expressed NR1H4 and GSPCRs of the healthy liver integrate postprandial cues, which sustain HSC quiescence and, through paracrine signals, overall sinusoidal health. Hence HSC activation in MASH not only drives fibrogenesis but may desensitize the hepatic sinusoid to liver homeostatic signals. IMPACT AND IMPLICATIONS: Homeostatic interactions between hepatic cell types and their deterioration in metabolic dysfunction-associated steatohepatitis are poorly characterized. In our current single cell-resolved study of advanced murine metabolic dysfunction-associated steatohepatitis, we identified a quiescence-associated hepatic stellate cell-signaling module with potential to preserve normal sinusoid function. As expression levels of its constituents are conserved in the human liver, stimulation of the identified signaling module is a promising therapeutic strategy to restore sinusoid function in chronic liver disease.


Diabetes Mellitus, Type 2 , Fatty Liver , Mice , Humans , Animals , Pericytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Liver/pathology , Signal Transduction , Hepatic Stellate Cells/metabolism , Fatty Liver/metabolism , Liver Cirrhosis/pathology , Growth Differentiation Factor 2/metabolism
3.
JHEP Rep ; 5(2): 100615, 2023 Feb.
Article En | MEDLINE | ID: mdl-36687468

Background & Aims: Histological assessment of liver biopsies is the gold standard for diagnosis of non-alcoholic steatohepatitis (NASH), the progressive form of non-alcoholic fatty liver disease (NAFLD), despite its well-established limitations. Therefore, non-invasive biomarkers that can offer an integrated view of the liver are needed to improve diagnosis and reduce sampling bias. Hepatic stellate cells (HSCs) are central in the development of hepatic fibrosis, a hallmark of NASH. Secreted HSC-specific proteins may, therefore, reflect disease state in the NASH liver and serve as non-invasive diagnostic biomarkers. Methods: We performed RNA-sequencing on liver biopsies from a histologically characterised cohort of obese patients (n = 30, BMI >35 kg/m2) to identify and evaluate HSC-specific genes encoding secreted proteins. Bioinformatics was used to identify potential biomarkers and their expression at single-cell resolution. We validated our findings using single-molecule fluorescence in situ hybridisation (smFISH) and ELISA to detect mRNA in liver tissue and protein levels in plasma, respectively. Results: Hepatic expression of SPARC-related modular calcium-binding protein 2 (SMOC2) was increased in NASH compared to no-NAFLD (p.adj <0.001). Single-cell RNA-sequencing data indicated that SMOC2 was primarily expressed by HSCs, which was validated using smFISH. Finally, plasma SMOC2 was elevated in NASH compared to no-NAFLD (p <0.001), with a predictive accuracy of AUROC 0.88. Conclusions: Increased SMOC2 in plasma appears to reflect HSC activation, a key cellular event associated with NASH progression, and may serve as a non-invasive biomarker of NASH. Impact and implications: Non-alcoholic fatty liver disease (NAFLD) and its progressive form, non-alcoholic steatohepatitis (NASH), are the most common forms of chronic liver diseases. Currently, liver biopsies are the gold standard for diagnosing NAFLD. Blood-based biomarkers to complement liver biopsies for diagnosis of NAFLD are required. We found that activated hepatic stellate cells, a cell type central to NAFLD pathogenesis, upregulate expression of the secreted protein SPARC-related modular calcium-binding protein 2 (SMOC2). SMOC2 was elevated in blood samples from patients with NASH and may hold promise as a blood-based biomarker for the diagnosis of NAFLD.

4.
Cytometry A ; 101(1): 45-56, 2022 01.
Article En | MEDLINE | ID: mdl-33455046

A comprehensive analysis of T cell activation markers in chicken is lacking. Kinetics of T cell activation markers (CD25, CD28, CD5, MHC-II, CD44, and CD45) in response to in vitro stimulation of peripheral blood mononuclear cells with concanavalin A (Con A) were evaluated between two chicken lines selected for high and low levels of mannose-binding lectin in serum (L10H and L10L, respectively) by flow cytometry. L10H chickens showed a stronger response to Con A based on the frequency of T cell blasts in both the CD4+ and CD8+ compartment. The majority of the proliferating CD4+ and CD8+ T cells expressed CD25. Proliferating T cells were seen both in the CD4+ MHC-II+/- and CD8+ MHC-II+/- population. For both CD4+ and CD8+ T cells, frequencies of CD25+ and MHC-II+ T cells were increased 24 h after stimulation. CD28+ frequencies were only increased on CD8+ T cells 48 h after stimulation. An increase in the relative surface expression based on mean fluorescence intensity (MFI) upon activation was observed for most markers except CD5. For CD4+ T cells, CD28 expression increased 24 h after stimulation whereas MHC-II expression increased after 48 h. For CD8+ T cells, a tendency toward an increase in CD25 expression was observed. CD28 expression started to increase 24 h after stimulation and only a transient peak in MHC-II expression on CD8+ T cells was observed after 24 h. CD44 and CD45 expressed on CD4+ and CD8+ T cells increased 24-72 h after stimulation. In summary, the frequency of CD25+ and MHC-II+ T cells were shown to be early markers (24 h) for in vitro activation of both CD4+ and CD8+ T cells. Frequency of CD28+ T cells was a later marker (48 h) and only for CD8+ T cells. Surface expression of all markers (MFI) increased permanently or transiently upon activation except for CD5.


CD8-Positive T-Lymphocytes , Chickens , Animals , CD28 Antigens , Flow Cytometry , Kinetics , Leukocytes, Mononuclear , Lymphocyte Activation
5.
Vaccines (Basel) ; 8(2)2020 May 15.
Article En | MEDLINE | ID: mdl-32429204

Infectious bronchitis virus (IBV) is a highly contagious avian coronavirus. IBV causes substantial worldwide economic losses in the poultry industry. Vaccination with live-attenuated viral vaccines, therefore, are of critical importance. Live-attenuated viral vaccines, however, exhibit the potential for reversion to virulence and recombination with virulent field strains. Therefore, alternatives such as subunit vaccines are needed together with the identification of suitable adjuvants, as subunit vaccines are less immunogenic than live-attenuated vaccines. Several glycan-based adjuvants directly targeting mammalian C-type lectin receptors were assessed in vitro using chicken bone marrow-derived dendritic cells (BM-DCs). The ß-1-6-glucan, pustulan, induced an up-regulation of MHC class II (MHCII) cell surface expression, potentiated a strong proinflammatory cytokine response, and increased endocytosis in a cation-dependent manner. Ex vivo co-culture of peripheral blood monocytes from IBV-immunised chickens, and BM-DCs pulsed with pustulan-adjuvanted recombinant IBV N protein (rN), induced a strong recall response. Pustulan-adjuvanted rN induced a significantly higher CD4+ blast percentage compared to either rN, pustulan or media. However, the CD8+ and TCRγδ+ blast percentage were significantly lower with pustulan-adjuvanted rN compared to pustulan or media. Thus, pustulan enhanced the efficacy of MHCII antigen presentation, but apparently not the cross-presentation on MHCI. In conclusion, we found an immunopotentiating effect of pustulan in vitro using chicken BM-DCs. Thus, future in vivo studies might show pustulan as a promising glycan-based adjuvant for use in the poultry industry to contain the spread of coronaviridiae as well as of other avian viral pathogens.

6.
Mol Immunol ; 114: 216-225, 2019 10.
Article En | MEDLINE | ID: mdl-31386978

C-type lectin-like domain containing proteins (CTLDcps) mainly bind carbohydrate-based ligands, but also other ligands. CTLDcps are involved in several biological processes including cell adhesion, cell-cell interactions, and pathogen recognition. Pathogen recognition by myeloid cells, e.g. dendritic cells (DCs), can be facilitated through cell surface expressed CTLDcps. Cell surface expressed CTLDcps have been exploited in vaccine designs for specific targeting of human and mouse DCs using antibodies. In recent years, however, DC targeting using carbohydrate-based vaccines has gained interest due to low production cost, limited immunogenicity, and possibility of multivalent adjustment. In chicken, however, only a few CTLDcps have been identified. Identifying and annotating additional chicken CTLDcps (chCTLDcps) is needed to exploit carbohydrate-mediated DC targeting in chicken. Therefore, we searched the chicken GRCg6a assembly for novel chCTLDcps. We identified 28 chCTLDcps of which 10 had previously been described and also experimentally validated. RNA-seq and RT-qPCR confirmed mRNA expression of the remaining 18 identified chCTLDcps. A group of highly related chCTLDcps, moreover, was shown to be avian-specific and comprise novel members mapped to the proposed chicken natural killer gene complex. Two chCTLDcps, chCLEC17AL-A and chCLEC17AL-B, were found to share a recent common ancestor with CLEC17A. Putative mannose or fucose-binding sequence motifs, EPN and WND, were found in the CTLD of chCLEC17AL-A. Both contained intracellular internalisation and signalling sequence motifs. In conclusion, several chCTLDcps were identified and their expression confirmed. Both chCLEC17AL-A and -B showed promise as potential targets in carbohydrate-based chicken vaccine strategies. Determination of DC-specific expression of chCLEC17AL-A and -B, thus, might prove useful in chicken vaccinology.


Carbohydrates/immunology , Lectins, C-Type/immunology , Lectins, C-Type/metabolism , Vaccines/immunology , Amino Acid Sequence , Animals , Chickens , Dendritic Cells/immunology , Female , Humans , Ligands , Mice , Myeloid Cells/immunology
7.
Dev Comp Immunol ; 96: 93-102, 2019 07.
Article En | MEDLINE | ID: mdl-30763593

Vaccination programs are implemented in poultry farms to limit outbreaks and spread of infectious bronchitis virus (IBV), which is a substantial economic burden in the poultry industry. Immune correlates, used to predict vaccine efficacy, have proved difficult to find for IBV-vaccine-induced protection. To find correlates of IBV-vaccine-induced protection, hence, we employed a flow cytometric assay to quantify peripheral leucocyte subsets and expression of cell surface markers of six different non-vaccinated and vaccinated Major Histocompatibility Complex (MHC) haplotypes. Non-vaccinated and vaccinated MHC haplotypes presented differential leucocyte composition and IBV viral load. A strong effect of MHC-B, but not vaccination, on several leucocyte subsets resulted in positive correlations with IBV viral load based on MHC haplotype ranking. In addition, a strong effect of MHC-B and vaccination on monocyte MHC-II expression showed that animals with highest monocyte MHC-II expression had weakest vaccine-induced protection. In conclusion, we found several interesting MHC-B related immune correlates of protection and that flow cytometric analysis can be employed to study correlates of IBV-vaccine-induced protection.


Chickens/virology , Coronavirus Infections/prevention & control , Infectious bronchitis virus/immunology , Poultry Diseases/prevention & control , Viral Vaccines/administration & dosage , Animals , Biomarkers/blood , Cell Separation/methods , Chickens/immunology , Coronavirus Infections/blood , Coronavirus Infections/immunology , Coronavirus Infections/virology , Female , Flow Cytometry/methods , Haplotypes , Immunogenicity, Vaccine , Leukocytes/immunology , Leukocytes/metabolism , Major Histocompatibility Complex/immunology , Poultry Diseases/blood , Poultry Diseases/immunology , Poultry Diseases/virology , Vaccination/methods , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/immunology , Viral Vaccines/immunology
8.
Vet Immunol Immunopathol ; 207: 53-61, 2019 Jan.
Article En | MEDLINE | ID: mdl-30593351

Phagocytic activity of leukocytes in whole blood was assessed as a potential immune competence trait in chickens. A flow cytometry based whole blood phagocytosis (WBP) assay was set up and evaluated using blood from chickens homozygous for four different MHC haplotypes, B12, B15, B19 and B21. Fluorescent latex beads and two serotypes of fluorescently labelled heat-killed bacteria (Salmonella Infantis and Salmonella. Typhimurium) were evaluated as phagocytic targets. In addition, the opsonophagocytic potential (OPp) of individual sera from the birds was included in a phagocytosis assay using the HD11 chicken macrophage cell line. Results showed that both serotypes of bacteria but not the latex beads were effectively phagocytosed by leukocytes in the whole blood cultures. Differences were observed in the phagocytic capacity of monocytes and thrombocyte/lymphocytes, respectively between the different MHC lines. No significant differences on the OPp of serum was identified between MHC lines. In addition, for both phagocytic activity of leukocytes and OPp of serum large variations between individuals were observed within MHC haplotypes. No significant relationships were observed between the phagocytic activity of leukocytes and serum OPp or Salmonella-specific IgY levels. In conclusion, our results suggest that the WBP assay, using a no-lyse no-wash single staining method, is a rapid and convenient method to assess phagocytic functions of different leukocyte populations.


Chickens/immunology , Flow Cytometry/veterinary , Leukocytes/immunology , Phagocytosis/immunology , Animals , Blood Platelets/immunology , Chickens/blood , Chickens/genetics , Female , Flow Cytometry/methods , Haplotypes/genetics , Haplotypes/immunology , Lymphocytes/immunology , Major Histocompatibility Complex/genetics , Monocytes/immunology
9.
Am J Pathol ; 188(8): 1865-1881, 2018 08.
Article En | MEDLINE | ID: mdl-29803831

Brain calcification of especially the basal ganglia characterizes primary familial brain calcification (PFBC). PFBC is a rare neurodegenerative disorder with neuropsychiatric and motor symptoms, and only symptomatic treatment is available. Four PFBC-associated genes are known; approximately 40% of patients carry mutations in the gene SLC20A2, which encodes the type III sodium-dependent inorganic phosphate transporter PiT2. To investigate the role of PiT2 in PFBC development, we studied Slc20a2-knockout (KO) mice using histology, microcomputed tomography, electron microscopy, and energy-dispersive X-ray spectroscopy. Slc20a2-KO mice showed histologically detectable nodules in the brain already at 8 weeks of age, which contained organic material and were weakly calcified. In 15-week-old mice, the nodules were increased in size and number and were markedly more calcified. The major minerals in overt calcifications were Ca and P, but Fe, Zn, and Al were also generally present. Electron microscopy suggested that the calcifications initiate intracellularly, mainly in pericytes and astrocytes. As the calcification grew, they incorporated organic material. Furthermore, endogenous IgG was detected around nodules, suggesting local increased blood-brain barrier permeabilities. Nodules were found in all 8-week-old Slc20a2-KO mice, but no prenatal or marked postnatal lethality was observed. Thus, besides allowing for the study of PFBC development, the Slc20a2-KO mouse is a potential solid preclinical model for evaluation of PFBC treatments.


Brain Diseases/physiopathology , Calcinosis/physiopathology , Fibroblasts/pathology , Growth Disorders/physiopathology , Sodium-Phosphate Cotransporter Proteins, Type III/physiology , Animals , Animals, Newborn , Cells, Cultured , Female , Fibroblasts/metabolism , Male , Mice , Mice, Knockout
...