Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
2.
J Digit Imaging ; 35(6): 1494-1505, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35794502

RESUMEN

Leg length discrepancies are common orthopedic problems with the potential for poor functional outcomes. These are frequently assessed using bilateral leg length radiographs. The objective was to determine whether an artificial intelligence (AI)-based image analysis system can accurately interpret long leg length radiographic images. We built an end-to-end system to analyze leg length radiographs and generate reports like radiologists, which involves measurement of lengths (femur, tibia, entire leg) and angles (mechanical axis and pelvic tilt), describes presence and location of orthopedic hardware, and reports laterality discrepancies. After IRB approval, a dataset of 1,726 extremities (863 images) from consecutive examinations at a tertiary referral center was retrospectively acquired and partitioned into train/validation and test sets. The training set was annotated and used to train a fasterRCNN-ResNet101 object detection convolutional neural network. A second-stage classifier using a EfficientNet-D0 model was trained to recognize the presence or absence of hardware within extracted joint image patches. The system was deployed in a custom web application that generated a preliminary radiology report. Performance of the system was evaluated using a holdout 220 image test set, annotated by 3 musculoskeletal fellowship trained radiologists. At the object detection level, the system demonstrated a recall of 0.98 and precision of 0.96 in detecting anatomic landmarks. Correlation coefficients between radiologist and AI-generated measurements for femur, tibia, and whole-leg lengths were > 0.99, with mean error of < 1%. Correlation coefficients for mechanical axis angle and pelvic tilt were 0.98 and 0.86, respectively, with mean absolute error of < 1°. AI hardware detection demonstrated an accuracy of 99.8%. Automatic quantitative and qualitative analysis of leg length radiographs using deep learning is feasible and holds potential in improving radiologist workflow.


Asunto(s)
Inteligencia Artificial , Radiología , Humanos , Pierna , Estudios Retrospectivos , Radiografía , Radiología/métodos
3.
Mol Biol Cell ; 30(19): 2515-2526, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31390291

RESUMEN

Apical microvilli are critical for the homeostasis of transporting epithelia, yet mechanisms that control the assembly and morphology of these protrusions remain poorly understood. Previous studies in intestinal epithelial cell lines suggested a role for the F-BAR domain protein PACSIN2 in normal microvillar assembly. Here we report the phenotype of PACSIN2 KO mice and provide evidence that through its role in promoting apical endocytosis, this molecule plays a role in controlling microvillar morphology. PACSIN2 KO enterocytes exhibit reduced numbers of microvilli and defects in the microvillar ultrastructure, with membranes lifting away from rootlets of core bundles. Dynamin2, a PACSIN2 binding partner, and other endocytic factors were also lost from their normal localization near microvillar rootlets. To determine whether loss of endocytic machinery could explain defects in microvillar morphology, we examined the impact of PACSIN2 KD and endocytosis inhibition on live intestinal epithelial cells. These assays revealed that when endocytic vesicle scission fails, tubules are pulled into the cytoplasm and this, in turn, leads to a membrane-lifting phenomenon reminiscent of that observed at PACSIN2 KO brush borders. These findings lead to a new model where inward forces generated by endocytic machinery on the plasma membrane control the membrane wrapping of cell surface protrusions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mucosa Intestinal/metabolismo , Microvellosidades/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Tumoral , Membrana Celular/metabolismo , Endocitosis , Enterocitos/metabolismo , Células Epiteliales/metabolismo , Femenino , Humanos , Intestinos , Ratones , Ratones Noqueados
4.
Curr Biol ; 28(18): 2876-2888.e4, 2018 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-30197089

RESUMEN

Transporting epithelial cells like those that line the gut build large arrays of actin-supported protrusions called microvilli, which extend from the apical surface into luminal spaces to increase functional surface area. Although critical for maintaining physiological homeostasis, mechanisms controlling the formation of microvilli remain poorly understood. Here, we report that the inverse-bin-amphiphysin-Rvs (I-BAR)-domain-containing protein insulin receptor tyrosine kinase substrate (IRTKS) (also known as BAIAP2L1) promotes the growth of epithelial microvilli. Super-resolution microscopy and live imaging of differentiating epithelial cells revealed that IRTKS localizes to the distal tips of actively growing microvilli via a mechanism that requires its N-terminal I-BAR domain. At microvillar tips, IRTKS promotes elongation through a mechanism involving its C-terminal actin-binding WH2 domain. IRTKS can also drive microvillar elongation using its SH3 domain to recruit the bundling protein EPS8 to microvillar tips. These results provide new insight on mechanisms that control microvillar growth during the differentiation of transporting epithelial cells and help explain why IRTKS is targeted by enteric pathogens that disrupt microvillar structure during infection of the intestinal epithelium.


Asunto(s)
Proteínas de Microfilamentos/genética , Microvellosidades/metabolismo , Actinas/metabolismo , Animales , Línea Celular , Colon , Células Epiteliales , Femenino , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Unión Proteica , Dominios Homologos src/genética
5.
Curr Opin Cell Biol ; 44: 68-78, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27836411

RESUMEN

Unconventional myosins are actin-based molecular motors that serve a multitude of roles within the cell. One group of myosin motors, the MyTH4-FERM myosins, play an integral part in building and maintaining finger-like protrusions, which allow cells to interact with their external environment. Suggested to act primarily as transporters, these motor proteins enrich adhesion molecules, actin-regulatory proteins and other factors at the tips of filopodia, microvilli, and stereocilia. Below we review data from biophysical, biochemical, and cell biological studies, which implicate these myosins as central players in the assembly, maintenance and function of actin-based protrusions.


Asunto(s)
Extensiones de la Superficie Celular/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Animales , Extensiones de la Superficie Celular/química , Humanos , Miosinas/análisis , Seudópodos/metabolismo
6.
Cytoskeleton (Hoboken) ; 73(11): 670-679, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27464680

RESUMEN

Cordon-bleu (COBL) is a multifunctional WASP-Homology 2 (WH2) domain-containing protein implicated in a wide variety of cellular functions ranging from dendritic arborization in neurons to the assembly of microvilli on the surface of transporting epithelial cells. In vitro biochemical studies suggest that COBL is capable of nucleating and severing actin filaments, among other activities. How the multiple activities of COBL observed in vitro contribute to its function in cells remains unclear. Here, we used live imaging to evaluate the impact of COBL expression on the actin cytoskeleton in cultured cells. We found that COBL induces the formation of dynamic linear actin structures throughout the cytosol. We also found that stabilizing these dynamic structures with the parallel actin-bundling protein espin slows down their turnover and enables the robust formation of self-supported protrusions on the dorsal cell surface. Super-resolution imaging revealed a global remodeling of the actin cytoskeleton in cells expressing these two factors. Taken together, these results provide insight as to how COBL contributes to the assembly of actin-based structures such as epithelial microvilli. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Regulación de la Expresión Génica/fisiología , Proteínas de Microfilamentos/metabolismo , Microvellosidades/metabolismo , Proteínas/metabolismo , Citoesqueleto de Actina/genética , Animales , Línea Celular Tumoral , Proteínas del Citoesqueleto , Ratones , Proteínas de Microfilamentos/genética , Microvellosidades/genética , Proteínas/genética
7.
J Cell Biol ; 214(2): 197-213, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27402952

RESUMEN

Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.


Asunto(s)
Actinas/metabolismo , Cortactina/metabolismo , Exosomas/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Transporte Biológico , Línea Celular Tumoral , Membrana Celular/metabolismo , Cortactina/ultraestructura , Exosomas/ultraestructura , Humanos , Proteínas de Microfilamentos , Modelos Biológicos , Simulación del Acoplamiento Molecular , Cuerpos Multivesiculares/metabolismo , Cuerpos Multivesiculares/ultraestructura , Fenotipo , Unión Proteica , Seudópodos/metabolismo , ARN Interferente Pequeño/metabolismo , Tetraspanina 30/metabolismo , Proteínas de Unión al GTP rab/metabolismo
8.
J AOAC Int ; 99(2): 417-27, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27103105

RESUMEN

The Thermo Scientific™ SureTect™ Listeria species assay is a new real-time PCR assay for the detection of all species of Listeria in food and environmental samples. The assay was originally certified as Performance Tested Methods(SM) (PTM) 071304 in 2013. This report details the method modification study undertaken to extend the performance claims of the assay for matrixes of raw ground turkey, raw ground pork, bagged lettuce, raw pork sausages, pasteurized 2% fat milk, raw cod, pasteurized brie cheese, and ice cream. The method modification study was conducted using the AOAC Research Institute (RI) PTM program to validate the SureTect PCR assay in comparison to the reference method detailed in ISO 11290-1:1996 including amendment 1:2004. All matrixes were tested by Thermo Fisher Scientific (Basingstoke, United Kingdom). In addition, three matrixes (raw cod, bagged lettuce, and pasteurized brie cheese) were analyzed independently as part of the AOAC RI-controlled independent laboratory study by the University of Guelph, Canada. Using probability of detection statistical analysis, there was no significant difference in the performance between the SureTect assay and the International Organization for Standardization reference method for any of the matrixes analyzed in this study.


Asunto(s)
ADN Bacteriano/genética , Análisis de los Alimentos , Microbiología de Alimentos , Listeria/clasificación , Listeria/aislamiento & purificación , Temperatura , Animales , Listeria/genética , Juego de Reactivos para Diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estándares de Referencia
9.
Dev Cell ; 36(2): 190-200, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26812018

RESUMEN

Transporting and sensory epithelial cells shape apical specializations using protocadherin-based adhesion. In the enterocyte brush border, protocadherin function requires a complex of cytoplasmic binding partners, although the composition of this complex and logic governing its assembly remain poorly understood. We found that ankyrin repeat and sterile α motif domain containing 4B (ANKS4B) localizes to the tips of adherent brush border microvilli and is essential for intermicrovillar adhesion. ANKS4B interacts with USH1C and MYO7B, which link protocadherins to the actin cytoskeleton. ANKS4B and USH1C also bind to the MYO7B cargo-binding tail at distinct sites. However, a tripartite complex only forms if ANKS4B and MYO7B are first activated by USH1C. This study uncovers an essential role for ANKS4B in brush border assembly, reveals a hierarchy in the molecular interactions that drive intermicrovillar adhesion, and informs our understanding of diseases caused by mutations in USH1C and ankyrin repeat proteins, such as Usher syndrome.


Asunto(s)
Proteínas Portadoras/metabolismo , Citoesqueleto/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adhesión Celular , Proteínas de Ciclo Celular , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Células Epiteliales/metabolismo , Humanos
10.
J AOAC Int ; 98(5): 1315-24, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26525250

RESUMEN

The Thermo Scientific™ SureTect™ Listeria monocytogenes assay is a real-time PCR assay for the detection of Listeria monocytogenes in food and environmental samples, which was certified during 2013 by the AOAC Research Institute (RI) as Performance Tested Method(SM) (PTM) 061302 for a representative range of key food matrixes and production surfaces. This report details the method modification study, which was conducted during 2014, using the AOAC-RI PTM program to extend the validated matrix claims of the assay in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996, including Amendment 1:2004, to gain certification for raw ground turkey, raw ground pork, pasteurized 2% milk, raw pork sausages, raw cod, pasteurized brie cheese, cooked sliced ham, and bagged lettuce. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. In addition, brie cheese, bagged lettuce, and raw cod were analyzed independently by the University of Guelph, Canada, during the AOAC-RI controlled independent laboratory study. Using probability of detection (POD) statistical analysis, a significant difference was demonstrated between the candidate and reference methods for the high spiking level with raw ground pork and brie cheese. For all other matrixes and the low spiked levels for raw ground pork and brie cheese, no significant difference by POD was seen between the two methods during the study.


Asunto(s)
Productos Lácteos/microbiología , Listeria monocytogenes/genética , Carne/análisis , Alimentos Crudos/análisis , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Alimentos Marinos/microbiología , Animales , Bovinos , Análisis de los Alimentos , Contaminación de Alimentos/análisis , Humanos , Alimentos Crudos/microbiología , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad
11.
Mol Biol Cell ; 26(21): 3803-15, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354418

RESUMEN

Microvilli are actin-based protrusions found on the surface of diverse cell types, where they amplify membrane area and mediate interactions with the external environment. In the intestinal tract, these protrusions play central roles in nutrient absorption and host defense and are therefore essential for maintaining homeostasis. However, the mechanisms controlling microvillar assembly remain poorly understood. Here we report that the multifunctional actin regulator cordon bleu (COBL) promotes the growth of brush border (BB) microvilli. COBL localizes to the base of BB microvilli via a mechanism that requires its proline-rich N-terminus. Knockdown and overexpression studies show that COBL is needed for BB assembly and sufficient to induce microvillar growth using a mechanism that requires functional WH2 domains. We also find that COBL acts downstream of the F-BAR protein syndapin-2, which drives COBL targeting to the apical domain. These results provide insight into a mechanism that regulates microvillar growth during epithelial differentiation and have significant implications for understanding the maintenance of intestinal homeostasis.


Asunto(s)
Proteínas de Microfilamentos/metabolismo , Microvellosidades/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Técnicas de Cultivo de Célula , Células HEK293 , Humanos , Ratones , Estructura Terciaria de Proteína , Sindecano-2/metabolismo
12.
Gut Microbes ; 5(4): 504-16, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25076126

RESUMEN

Enteropathogenic Escherichia coli (EPEC) induces dramatic remodeling of enterocyte brush borders, a process that includes microvillar effacement and actin pedestal formation. Although the Arp2/3 complex is involved in formation of a branched actin network within pedestals, the fate of parallel actin bundles in microvilli during infection remains unclear. Here, we find that in polarized intestinal epithelial cells, EPEC stimulates long-range microvillar dynamics, pulling protrusions toward sites of bacterial attachment in a process mediated by the adhesion molecule protocadherin-24. Additionally, retraction of the EPEC bundle forming pilus stimulates directed elongation of nearby microvilli. These processes lead to coalescence of microvilli and incorporation of the underlying parallel actin bundles into pedestals. Furthermore, stabilization of microvillar actin bundles delays pedestal formation. Together, these results suggest a model where EPEC takes advantage of pre-existing actin filaments in microvillar core bundles to facilitate pedestal formation.


Asunto(s)
Adhesión Bacteriana , Enterocitos/microbiología , Enterocitos/fisiología , Escherichia coli Enteropatógena/fisiología , Interacciones Huésped-Patógeno , Microvellosidades/fisiología , Actinas/metabolismo , Células CACO-2 , Enterocitos/ultraestructura , Humanos , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente
13.
J Am Podiatr Med Assoc ; 104(3): 283-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24901588

RESUMEN

Posterior heel pain after a prior Haglund's deformity surgical correction can be resultant to multiple etiologies: osseous, tendinous, and neural. In this case report, all three potential etiologies were found to be contributing to the postoperative status of the patient. This case report illustrates identification and treatment of a neuroma in continuity of the posterior branch of the sural nerve with preservation of the sural nerve itself via microdissection, which we believe has not been described previously in the literature.


Asunto(s)
Dolor Crónico/etiología , Deformidades Congénitas del Pie/cirugía , Talón/fisiopatología , Neuroma/cirugía , Procedimientos Ortopédicos/efectos adversos , Nervio Sural/fisiopatología , Anciano , Calcáneo/diagnóstico por imagen , Calcáneo/fisiopatología , Calcáneo/cirugía , Dolor Crónico/diagnóstico , Dolor Crónico/cirugía , Femenino , Estudios de Seguimiento , Deformidades Congénitas del Pie/complicaciones , Deformidades Congénitas del Pie/diagnóstico , Talón/cirugía , Humanos , Neuroma/complicaciones , Neuroma/diagnóstico , Procedimientos Ortopédicos/métodos , Dimensión del Dolor , Atención Perioperativa , Complicaciones Posoperatorias/diagnóstico , Radiografía , Medición de Riesgo , Nervio Sural/cirugía , Resultado del Tratamiento
14.
J AOAC Int ; 97(2): 539-60, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830166

RESUMEN

The Thermo Scientific SureTect Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested Methods program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time and temperature, and lysis temperature), which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.


Asunto(s)
Microbiología de Alimentos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Salmonella/clasificación , Animales , Huevos/microbiología , Microbiología de Alimentos/normas , Carne/microbiología , Leche/microbiología , Estándares de Referencia , Sensibilidad y Especificidad , Especificidad de la Especie , Acero Inoxidable , Verduras/microbiología
15.
J AOAC Int ; 97(2): 521-38, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830165

RESUMEN

The Thermo Scientific SureTect Listeria species Assay is a new real-time PCR assay for the detection of all species of Listeria in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested Methods program to validate the SureTect Listeria species Assay in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996 including amendment 1:2004 in a variety of foods plus plastic and stainless steel. The food matrixes validated were smoked salmon, processed cheese, fresh bagged spinach, cantaloupe, cooked prawns, cooked sliced turkey meat, cooked sliced ham, salami, pork frankfurters, and raw ground beef. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. In addition, three matrixes (pork frankfurters, fresh bagged spinach, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled independent laboratory study by the University ofGuelph, Canada. Using probability of detection statistical analysis, a significant difference in favour of the SureTect assay was demonstrated between the SureTect and reference method for high level spiked samples of pork frankfurters, smoked salmon, cooked prawns, stainless steel, and low-spiked samples of salami. For all other matrixes, no significant difference was seen between the two methods during the study. Inclusivity testing was conducted with 68 different isolates of Listeria species, all of which were detected by the SureTect Listeria species Assay. None of the 33 exclusivity isolates were detected by the SureTect Listeria species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation, which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.


Asunto(s)
Técnicas Bacteriológicas/métodos , Microbiología de Alimentos/métodos , Listeria/aislamiento & purificación , Animales , Técnicas Bacteriológicas/normas , Queso/microbiología , ADN Bacteriano/genética , Microbiología Ambiental , Microbiología de Alimentos/normas , Listeria/genética , Carne/microbiología , Plásticos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Especificidad de la Especie , Acero Inoxidable , Verduras/microbiología
16.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725409

RESUMEN

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Asunto(s)
Cadherinas/metabolismo , Enterocitos/metabolismo , Microvellosidades/metabolismo , Animales , Células COS , Células CACO-2 , Proteínas Relacionadas con las Cadherinas , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas del Citoesqueleto , Modelos Animales de Enfermedad , Enterocitos/citología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Microvellosidades/ultraestructura , Miosinas/metabolismo , Síndromes de Usher/patología
17.
J AOAC Int ; 97(1): 133-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24672870

RESUMEN

The Thermo Scientific SureTect Listeria monocytogenes Assay is a new real-time PCR assay for the detection of Listeria monocytogenes in food and environmental samples. This assay was validated using the AOAC Research Institute (AOAC-RI) Performance Tested Methods program in comparison to the reference method detailed in International Organization for Standardization 11290-1:1996, including Amendment 1:2004 with the following foods and food contact surfaces: smoked salmon, processed cheese, fresh bagged spinach, fresh cantaloupe, cooked prawns (chilled product), cooked sliced turkey meat (chilled product), ice cream, pork frankfurters, salami, ground raw beef meat (12% fat), plastic, and stainless steel. All matrixes were tested by Thermo Fisher Scientific, Microbiology Division, Basingstoke, UK. In addition, three matrixes (pork frankfurters, bagged lettuce, and stainless steel) were analyzed independently as part of the AOAC-RI controlled laboratory study by the University of Guelph, Canada. Using probability of detection (POD) statistical analysis, a significant difference was demonstrated between the candidate and reference methods for salami, cooked sliced turkey and ice cream in favor of the SureTect assay. For all other matrixes, no significant difference by POD was seen between the two methods during the study. Inclusivity and exclusivity testing was also conducted with 53 and 30 isolates, respectively, which demonstrated that the SureTect assay was able to detect all serotypes of L. monocytogenes. None of the exclusivity isolates analyzed were detected by the SureTect assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside the recommended parameters open to variation, i.e., enrichment time and temperature and lysis temperature, which demonstrated that the assay gave reliable performance. Accelerated stability testing was also conducted, validating the assay shelf life.


Asunto(s)
Técnicas Bacteriológicas/métodos , Microbiología Ambiental , Microbiología de Alimentos , Listeria monocytogenes/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Animales , Técnicas Bacteriológicas/instrumentación , Cucumis melo/microbiología , Productos Lácteos/microbiología , Carne/microbiología , Plásticos , Spinacia oleracea/microbiología , Acero Inoxidable
18.
J AOAC Int ; 97(2): 539-560, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29166999

RESUMEN

The Thermo Scientific™ SureTect™ Salmonella species Assay is a new real-time PCR assay for the detection of Salmonellae in food and environmental samples. This validation study was conducted using the AOAC Research Institute (RI) Performance Tested MethodsSM program to validate the SureTect Salmonella species Assay in comparison to the reference method detailed in International Organization for Standardization 6579:2002 in a variety of food matrixes, namely, raw ground beef, raw chicken breast, raw ground pork, fresh bagged lettuce, pork frankfurters, nonfat dried milk powder, cooked peeled shrimp, pasteurized liquid whole egg, ready-to-eat meal containing beef, and stainless steel surface samples. With the exception of liquid whole egg and fresh bagged lettuce, which were tested in-house, all matrixes were tested by Marshfield Food Safety, Marshfield, WI, on behalf of Thermo Fisher Scientific. In addition, three matrixes (pork frankfurters, lettuce, and stainless steel surface samples) were analyzed independently as part of the AOAC-RI-controlled laboratory study by the University of Guelph, Canada. No significant difference by probability of detection or McNemars Chi-squared statistical analysis was found between the candidate or reference methods for any of the food matrixes or environmental surface samples tested during the validation study. Inclusivity and exclusivity testing was conducted with 117 and 36 isolates, respectively, which demonstrated that the SureTect Salmonella species Assay was able to detect all the major groups of Salmonella enterica subspecies enterica (e.g., Typhimurium) and the less common subspecies of S. enterica (e.g., arizoniae) and the rarely encountered S. bongori. None of the exclusivity isolates analyzed were detected by the SureTect Salmonella species Assay. Ruggedness testing was conducted to evaluate the performance of the assay with specific method deviations outside of the recommended parameters open to variation (enrichment time and temperature, and lysis temperature), which demonstrated that the assay gave reliable performance. Accelerated stability testing was additionally conducted, validating the assay shelf life.

19.
Cell Rep ; 5(5): 1159-68, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24290760

RESUMEN

Unconventional secretion of exosome vesicles from multivesicular endosomes (MVEs) occurs across a broad set of systems and is reported to be upregulated in cancer, where it promotes aggressive behavior. However, regulatory control of exosome secretion is poorly understood. Using cancer cells, we identified specialized invasive actin structures called invadopodia as specific and critical docking and secretion sites for CD63- and Rab27a-positive MVEs. Thus, inhibition of invadopodia formation greatly reduced exosome secretion into conditioned media. Functionally, addition of purified exosomes or inhibition of exosome biogenesis or secretion greatly affected multiple invadopodia life cycle steps, including invadopodia formation, stabilization, and exocytosis of proteinases, indicating a key role for exosome cargoes in promoting invasive activity and providing in situ signaling feedback. Exosome secretion also controlled cellular invasion through three-dimensional matrix. These data identify a synergistic interaction between invadopodia biogenesis and exosome secretion and reveal a fundamental role for exosomes in promoting cancer cell invasiveness.


Asunto(s)
Movimiento Celular , Exocitosis , Exosomas/metabolismo , Seudópodos/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Vías Secretoras , Tetraspanina 30/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas rab27 de Unión a GTP
20.
Mol Biol Cell ; 24(22): 3496-510, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24048452

RESUMEN

Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the "autocrine extracellular matrix (ECM) deposition" fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell-directed movement.


Asunto(s)
Moléculas de Adhesión Celular/genética , Movimiento Celular/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Musculares/genética , Proteínas del Tejido Nervioso/genética , Pericardio/metabolismo , Animales , Comunicación Autocrina , Células COS , Moléculas de Adhesión Celular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Chlorocebus aethiops , Embrión de Mamíferos , Endosomas/metabolismo , Endosomas/ultraestructura , Matriz Extracelular/ultraestructura , Fibronectinas/genética , Fibronectinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Musculares/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Pericardio/citología , Cultivo Primario de Células , Transducción de Señal , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...