Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
PLoS One ; 18(1): e0281010, 2023.
Article En | MEDLINE | ID: mdl-36701280

Maritime archaeological investigations of the wreck of the medieval warship Gribshunden (1495), flagship of King Hans of Denmark and Norway, have revealed diverse artifacts including exotic spices imported from far distant origins: saffron, ginger, clove, peppercorns, and almond. The special circumstances of the vessel's last voyage add unique context to the assemblage. Gribshunden and an accompanying squadron conveyed the king, courtiers, noblemen, and soldiers from Copenhagen to a political summit in Kalmar, Sweden. At that conference, Hans expected the Swedish Council to elect him king of Sweden, and thereby fulfill his ambition to reunify the Nordic region under a single crown. To achieve this, Hans assembled in his fleet and particularly aboard his flagship the people and elite cultural signifiers that would convince the Swedish delegation to accept his rule. Along the way, the ships anchored near Ronneby, Blekinge. Written sources record that an explosion and fire caused Gribshunden to sink off Stora Ekön (Great Oak Island). Exotic spices were status markers among the aristocracy in Scandinavia and around the Baltic Sea during the Middle Ages (1050-1550 CE). Until the Gribshunden finds, these extravagances have rarely or never been represented archaeologically. Evidence of their use and consumption in medieval Scandinavia has been limited to sparse written references. We present here the botanical remains from the Gribshunden shipwreck and compare them to previous archaeobotanical finds from the medieval Baltic region. These opulent status symbols traveled with a medieval king en route to a major historical event. The combination of textual and archaeological evidence allows a novel analytical view of the social environment in which these luxurious foods were consumed.


Spices , Travel , Humans , Male , Sweden , Scandinavian and Nordic Countries , Norway
2.
Cardiovasc Res ; 118(2): 489-502, 2022 01 29.
Article En | MEDLINE | ID: mdl-33693480

AIMS: Fibroblast growth factor (FGF) 21, a key regulator of energy metabolism, is currently evaluated in humans for treatment of type 2 diabetes and non-alcoholic steatohepatitis. However, the effects of FGF21 on cardiovascular benefit, particularly on lipoprotein metabolism in relation to atherogenesis, remain elusive. METHODS AND RESULTS: Here, the role of FGF21 in lipoprotein metabolism in relation to atherosclerosis development was investigated by pharmacological administration of a half-life extended recombinant FGF21 protein to hypercholesterolaemic APOE*3-Leiden.CETP mice, a well-established model mimicking atherosclerosis initiation and development in humans. FGF21 reduced plasma total cholesterol, explained by a reduction in non-HDL-cholesterol. Mechanistically, FGF21 promoted brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning, thereby enhancing the selective uptake of fatty acids from triglyceride-rich lipoproteins into BAT and into browned WAT, consequently accelerating the clearance of the cholesterol-enriched remnants by the liver. In addition, FGF21 reduced body fat, ameliorated glucose tolerance and markedly reduced hepatic steatosis, related to up-regulated hepatic expression of genes involved in fatty acid oxidation and increased hepatic VLDL-triglyceride secretion. Ultimately, FGF21 largely decreased atherosclerotic lesion area, which was mainly explained by the reduction in non-HDL-cholesterol as shown by linear regression analysis, decreased lesion severity, and increased atherosclerotic plaque stability index. CONCLUSION: FGF21 improves hypercholesterolaemia by accelerating triglyceride-rich lipoprotein turnover as a result of activating BAT and browning of WAT, thereby reducing atherosclerotic lesion severity and increasing atherosclerotic lesion stability index. We have thus provided additional support for the clinical use of FGF21 in the treatment of atherosclerotic cardiovascular disease.


Anticholesteremic Agents/pharmacology , Atherosclerosis/prevention & control , Cholesterol/blood , Fibroblast Growth Factors/pharmacology , Hypercholesterolemia/drug therapy , Plaque, Atherosclerotic , Adipose Tissue, Brown/drug effects , Adipose Tissue, Brown/metabolism , Adipose Tissue, Brown/pathology , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Adiposity/drug effects , Animals , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/pathology , Biomarkers/blood , Disease Models, Animal , Energy Metabolism/drug effects , Hypercholesterolemia/blood , Hypercholesterolemia/genetics , Hypercholesterolemia/pathology , Lipid Metabolism/drug effects , Lipoproteins, VLDL/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Mice, Transgenic , Recombinant Proteins/pharmacology , Triglycerides/blood
3.
PLoS One ; 14(4): e0215578, 2019.
Article En | MEDLINE | ID: mdl-30998760

This study uses crop stable nitrogen isotope analysis of charred grain to explore manuring practices in arable production at the affluent regional center Uppåkra and a set of smaller surrounding sites, dating to the first millennium AD in southern Sweden. The isotopic analysis focuses on hulled barley, the principle crop in the Scandinavian Iron Age, and the minor crops: bread wheat, emmer wheat, rye and oat, are included to compare manuring practices in cultivation of other crop species during this period. A field experiment was first conducted to establish relationships between manuring and δ15N values in modern grain from known growing conditions. The data formed an interpretive framework to reconstruct past agricultural practices and manuring intensity in the archaeological study area. Our results from the ancient grains have demonstrated that barley from the early phase in the study area (AD 0-200) varies widely in its δ15N values, reflecting mixed manuring regimes. In the following periods (AD 200-1000), isotopic values are relatively high overall, indicating systematic input of manure. In this paper, we explore whether the isotopic data that indicates sustained and high manuring levels could reflect the wealth of Uppåkra and its surrounding areas by showing prosperity also in its agricultural production, since intensive manuring would have required more resource and labor investments. The new crop nitrogen isotopic data shed light on the agricultural practices of a long-lived Iron Age center and its surrounding areas.


Crop Production/history , Crops, Agricultural/growth & development , Hordeum/growth & development , Manure , Nitrogen Isotopes/analysis , Triticum/growth & development , Animals , History, Ancient , Humans , Sweden
4.
Carbohydr Polym ; 203: 256-264, 2019 Jan 01.
Article En | MEDLINE | ID: mdl-30318211

Magnetic resonance imaging (MRI) has been one of the most frequently-used diagnostic tools with high dimensional precision and positioning accuracy in clinical practices. To achieve contrast enhancement, utilization of high-efficient MR imaging contrast agents becomes a prime consideration and is indispensably reinforced the diagnosis precision, especially for the emerging precision medicine. Gadolinium (Gd)-based complexes has been widely used in current clinical MRI operations, however, numerous side effects were reported and highlighted in clinic. Those drawbacks render specific unmet needs to be clinically and technically improved with a new version of Gd-based compound. Here we report a newly-synthesized amphiphilic Gadodiamide-conjugated carboxymethyl-hexanoyl chitosan (termed as CHC-Gd) hybrid. The gadodiamide was selected is due to its smallest molecular size among other Gd-based complexes reported in literature, which assumed to give least influence on the resulting physicochemical properties such as colloidal stability, nanostructural evolution, and cytocompability, particularly self-assembly capability, of the resulting hybrid upon practical uses. Experimental outcomes showed a successful synthesis of the CHC-Gd hybrid using a one-pot synthesis protocol, where the gadodiamide complexes were covalently attached to the carboxyl groups along the CHC backbone. Self-assembly behavior can be observed to form a sphere-like nanoparticle of 100-200 nm in size as of amphiphilic native CHC macromolecule. Experimental outcomes indicated a largely improved cytocompatibility of the hybrid, compared with free Gd, suggesting the Gd+3 ions were well stabilized in the CHC nanostructure. Excellent contrastability in-vitro and in particular in vivo were measured, where for in-vivo test, a 10-40-folded reduction in dosage, compared with clinical Gd dose, was used and demonstrated a comparative-to-better imaging resolution and brightness. Therefore, from this preliminary investigation, a potential translation to clinical practice through the use of newly-synthesized amphiphilic CHC-Gd hybrid appears to be relatively promising.

5.
Cell Metab ; 27(5): 1055-1066.e3, 2018 May 01.
Article En | MEDLINE | ID: mdl-29719224

The processing of triglyceride-rich lipoproteins (TRLs) in capillaries provides lipids for vital tissues, but our understanding of TRL metabolism is limited, in part because TRL processing and lipid movement have never been visualized. To investigate the movement of TRL-derived lipids in the heart, mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial spaces and in the lipid droplets and mitochondria of cardiomyocytes. Enrichment of 2H in capillary endothelial cells was not greater than in cardiomyocytes, implying that endothelial cells may not be a control point for lipid movement into cardiomyocytes. Remarkably, a deficiency of the putative fatty acid transport protein CD36, which is expressed highly in capillary endothelial cells, did not impede entry of TRL-derived lipids into cardiomyocytes.


Capillaries/metabolism , Lipolysis , Lipoproteins/metabolism , Myocytes, Cardiac/metabolism , Triglycerides/metabolism , Animals , CD36 Antigens/metabolism , Capillaries/cytology , Deuterium/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Lipid Droplets/metabolism , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myocytes, Cardiac/cytology , Spectrometry, Mass, Secondary Ion/methods
6.
Adv Colloid Interface Sci ; 256: 48-64, 2018 Jun.
Article En | MEDLINE | ID: mdl-29804691

Films engineered to control the transport of liquids are widely used through society. Examples include barriers in packaging, wound care products, and controlled release coatings in pharmaceutics. When observed at the macroscopic scale such films commonly appear homogeneous, however, a closer look reveals a complex nano- and microstructure that together with the chemical properties of the different domains control the transport properties. In this review we compare and discuss macroscopic transport properties, measured using the straightforward, yet highly powerful technique "modified Ussing chambers", also denoted side-by-side diffusion cells, for a wide range of structured polymer films and composites. We also discuss and compare the macroscopic observations and conclusions on materials properties with that of lattice Boltzmann simulations of transport properties based on underlying material structure and chemistry. The survey of the field: (i) highlights the use and power of modified Ussing Chambers for determining liquid transport properties of polymer films, (ii) demonstrates the predictability in both directions between macroscopic observations of transport using modified Ussing chambers and structure-based simulations, and (iii) provides experimental and theoretical insights regarding the transport-determining properties of structured polymer films and composites.

7.
Heliyon ; 4(2): e00520, 2018 Feb.
Article En | MEDLINE | ID: mdl-29560443

Mine waters and tailings generated from mining and mineral processing activities often have detrimental impact on the local environment. One example is acid mine drainage, in which sulphides in the mining waste react with water and oxygen to produce an acidic environment that subsequently dissolves host rock minerals from the waste containing toxic metals and trace elements. Copper is one such metal of significance, as it is mined at large volumes in sulphide containing ores. It has strong biocidal activity that greatly affects ecosystems. We have previously reported that glutaraldehyde (GA)-crosslinked polyethyleneimine (PEI) has strong affinity and selectivity for copper and that diatomaceous earth (DE) particles can be modified with the material to form a copper-extraction resin. In this study, the copper uptake of GA-PEI-DE particles was investigated from synthetic and real acid mine drainage samples under different pHs and their copper removal performance was compared with that of selected commercial resins. The results revealed that copper could effectively and preferentially bind to the material at pH 4, and that the copper could be completely eluted by lowering of the pH. In addition, effective copper uptake and elution was demonstrated using real legacy acid mine drainage water from Mount Lyell in Tasmania.

8.
J Lipid Res ; 59(4): 706-713, 2018 04.
Article En | MEDLINE | ID: mdl-29449313

Glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1), an endothelial cell protein, binds LPL in the subendothelial spaces and transports it to the capillary lumen. In Gpihbp1-/- mice, LPL remains stranded in the subendothelial spaces, causing hypertriglyceridemia, but how Gpihbp1-/- mice respond to metabolic stress (e.g., cold exposure) has never been studied. In wild-type mice, cold exposure increases LPL-mediated processing of triglyceride-rich lipoproteins (TRLs) in brown adipose tissue (BAT), providing fuel for thermogenesis and leading to lower plasma triglyceride levels. We suspected that defective TRL processing in Gpihbp1-/- mice might impair thermogenesis and blunt the fall in plasma triglyceride levels. Indeed, Gpihbp1-/- mice exhibited cold intolerance, but the effects on plasma triglyceride levels were paradoxical. Rather than falling, the plasma triglyceride levels increased sharply (from ∼4,000 to ∼15,000 mg/dl), likely because fatty acid release by peripheral tissues drives hepatic production of TRLs that cannot be processed. We predicted that the sharp increase in plasma triglyceride levels would not occur in Gpihbp1-/-Angptl4-/- mice, where LPL activity is higher and baseline plasma triglyceride levels are lower. Indeed, the plasma triglyceride levels in Gpihbp1-/-Angptl4-/- mice fell during cold exposure. Metabolic studies revealed increased levels of TRL processing in the BAT of Gpihbp1-/-Angptl4-/- mice.


Cold Temperature , Receptors, Lipoprotein/blood , Receptors, Lipoprotein/deficiency , Thermogenesis , Triglycerides/blood , Animals , Apolipoproteins B/blood , Mice , Mice, Knockout
9.
RSC Adv ; 8(22): 12043-12052, 2018 Mar 26.
Article En | MEDLINE | ID: mdl-35539410

Porous ion-exchange resins with features of high selectivity, high capacity, fast adsorption kinetics and chemical stability over a wide pH range are attractive for extracting precious metals like copper and upcycling waste. In this study, porous glutaraldehyde-polyethyleneimine (GA-PEI) particulate resin was synthesised using diatomaceous earth (DE) particles as a bio-template. The crosslinking of PEI by GA was successfully conducted on the surface of DE. Removal of the template DE, merely by chemical etching with potassium hydroxide, resulted in the porous GA-PEI particulate resin. The resin showed excellent selectivity for copper ions in binding and recovery from solutions as complex as real legacy acid mine drainage liquid. The copper ion uptake capacity of the GA-PEI resin was determined to be >8 times greater than non-etched GA-PEI-DE particles. Under the investigated conditions, the GA-PEI resin showed higher selectivity to copper ions from real legacy acid mine drainage liquid compared to the commercial resins Purolite S930 Plus and Lewatit TP 220. Importantly, the absorbed copper ions could be released by simply adjusting pH of the solution to 1. For uptake from acid mine drainage liquid at pH 4 and elution at pH 1, purer copper solutions were achieved with GA-PEI compared to Purolite S930 Plus or Lewatit TP 220 following two cycles of iteration. The results indicate the great potential for using the porous GA-PEI resin in copper extraction under real-world conditions.

10.
JCI Insight ; 2(20)2017 10 19.
Article En | MEDLINE | ID: mdl-29046479

In mammals, GPIHBP1 is absolutely essential for transporting lipoprotein lipase (LPL) to the lumen of capillaries, where it hydrolyzes the triglycerides in triglyceride-rich lipoproteins. In all lower vertebrate species (e.g., birds, amphibians, reptiles, fish), a gene for LPL can be found easily, but a gene for GPIHBP1 has never been found. The obvious question is whether the LPL in lower vertebrates is able to reach the capillary lumen. Using purified antibodies against chicken LPL, we showed that LPL is present on capillary endothelial cells of chicken heart and adipose tissue, colocalizing with von Willebrand factor. When the antibodies against chicken LPL were injected intravenously into chickens, they bound to LPL on the luminal surface of capillaries in heart and adipose tissue. LPL was released rapidly from chicken hearts with an infusion of heparin, consistent with LPL being located inside blood vessels. Remarkably, chicken LPL bound in a specific fashion to mammalian GPIHBP1. However, we could not identify a gene for GPIHBP1 in the chicken genome, nor could we identify a transcript for GPIHBP1 in a large chicken RNA-seq data set. We conclude that LPL reaches the capillary lumen in chickens - as it does in mammals - despite an apparent absence of GPIHBP1.


Capillaries/metabolism , Chickens/metabolism , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Adipose Tissue/blood supply , Adipose Tissue/metabolism , Animals , Antibodies , Endothelial Cells/metabolism , Female , Goats , Heart , Heparin , Humans , Immunoglobulin G , Lipid Metabolism , Lipoprotein Lipase/genetics , Lipoproteins/metabolism , Male , Mice , Receptors, Lipoprotein/analysis , Receptors, Lipoprotein/genetics , Triglycerides/metabolism
11.
J Lipid Res ; 58(9): 1893-1902, 2017 09.
Article En | MEDLINE | ID: mdl-28694296

apoC-III is often assumed to retard the intravascular processing of triglyceride-rich lipoproteins (TRLs) by inhibiting LPL, but that view is based largely on studies of free LPL. We now recognize that intravascular LPL is neither free nor loosely bound, but instead is tightly bound to glycosylphosphatidylinositol-anchored HDL-binding protein 1 (GPIHBP1) on endothelial cells. Here, we revisited the effects of apoC-III on LPL, focusing on apoC-III's capacity to affect the activity of GPIHBP1-bound LPL. We found that TRLs from APOC3 transgenic mice bound normally to GPIHBP1-bound LPL on cultured cells in vitro and to heart capillaries in vivo. However, the triglycerides in apoC-III-enriched TRLs were hydrolyzed more slowly by free LPL, and the inhibitory effect of apoC-III on triglyceride lipolysis was exaggerated when LPL was bound to GPIHBP1 on the surface of agarose beads. Also, recombinant apoC-III reduced triglyceride hydrolysis by free LPL only modestly, but the inhibitory effect was greater when the LPL was bound to GPIHBP1. A mutant apoC-III associated with low plasma triglyceride levels (p.A23T) displayed a reduced capacity to inhibit free and GPIHBP1-bound LPL. Our results show that apoC-III potently inhibits triglyceride hydrolysis when LPL is bound to GPIHBP1.


Apolipoprotein C-III/metabolism , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism , Animals , CHO Cells , Cricetulus , Humans , Hydrolysis , Mice , Protein Binding
12.
J Lipid Res ; 58(7): 1453-1461, 2017 07.
Article En | MEDLINE | ID: mdl-28476858

Mutation of conserved cysteines in proteins of the Ly6 family cause human disease-chylomicronemia in the case of glycosylphosphatidylinositol-anchored HDL binding protein 1 (GPIHBP1) and paroxysmal nocturnal hemoglobinuria in the case of CD59. A mutation in a conserved cysteine in CD59 prevented the protein from reaching the surface of blood cells. In contrast, mutation of conserved cysteines in human GPIHBP1 had little effect on GPIHBP1 trafficking to the surface of cultured CHO cells. The latter findings were somewhat surprising and raised questions about whether CHO cell studies accurately model the fate of mutant GPIHBP1 proteins in vivo. To explore this concern, we created mice harboring a GPIHBP1 cysteine mutation (p.C63Y). The p.C63Y mutation abolished the ability of mouse GPIHBP1 to bind LPL, resulting in severe chylomicronemia. The mutant GPIHBP1 was detectable by immunohistochemistry on the surface of endothelial cells, but the level of expression was ∼70% lower than in WT mice. The mutant GPIHBP1 protein in mouse tissues was predominantly monomeric. We conclude that mutation of a conserved cysteine in GPIHBP1 abolishes the ability of GPIHBP1 to bind LPL, resulting in mislocalization of LPL and severe chylomicronemia. The mutation reduced but did not eliminate GPIHBP1 on the surface of endothelial cells in vivo.


Conserved Sequence , Cysteine , Lipoprotein Lipase/metabolism , Mutation , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Female , Humans , Lipoprotein Lipase/genetics , Mice , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Lipoprotein/genetics , Triglycerides/blood
13.
N Engl J Med ; 376(17): 1647-1658, 2017 04 27.
Article En | MEDLINE | ID: mdl-28402248

BACKGROUND: A protein that is expressed on capillary endothelial cells, called GPIHBP1 (glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1), binds lipoprotein lipase and shuttles it to its site of action in the capillary lumen. A deficiency in GPIHBP1 prevents lipoprotein lipase from reaching the capillary lumen. Patients with GPIHBP1 deficiency have low plasma levels of lipoprotein lipase, impaired intravascular hydrolysis of triglycerides, and severe hypertriglyceridemia (chylomicronemia). During the characterization of a monoclonal antibody-based immunoassay for GPIHBP1, we encountered two plasma samples (both from patients with chylomicronemia) that contained an interfering substance that made it impossible to measure GPIHBP1. That finding raised the possibility that those samples might contain GPIHBP1 autoantibodies. METHODS: Using a combination of immunoassays, Western blot analyses, and immunocytochemical studies, we tested the two plasma samples (as well as samples from other patients with chylomicronemia) for the presence of GPIHBP1 autoantibodies. We also tested the ability of GPIHBP1 autoantibodies to block the binding of lipoprotein lipase to GPIHBP1. RESULTS: We identified GPIHBP1 autoantibodies in six patients with chylomicronemia and found that these autoantibodies blocked the binding of lipoprotein lipase to GPIHBP1. As in patients with GPIHBP1 deficiency, those with GPIHBP1 autoantibodies had low plasma levels of lipoprotein lipase. Three of the six patients had systemic lupus erythematosus. One of these patients who had GPIHBP1 autoantibodies delivered a baby with plasma containing maternal GPIHBP1 autoantibodies; the infant had severe but transient chylomicronemia. Two of the patients with chylomicronemia and GPIHBP1 autoantibodies had a response to treatment with immunosuppressive agents. CONCLUSIONS: In six patients with chylomicronemia, GPIHBP1 autoantibodies blocked the ability of GPIHBP1 to bind and transport lipoprotein lipase, thereby interfering with lipoprotein lipase-mediated processing of triglyceride-rich lipoproteins and causing severe hypertriglyceridemia. (Funded by the National Heart, Lung, and Blood Institute and the Leducq Foundation.).


Autoantibodies/blood , Hyperlipoproteinemia Type I/immunology , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/immunology , Adult , Autoantibodies/physiology , Female , Humans , Hyperlipoproteinemia Type I/blood , Immunoassay , Lipolysis , Lipoprotein Lipase/blood , Male , Middle Aged , Protein Binding , Protein Transport , Receptors, Lipoprotein/metabolism
14.
Cancer Treat Rev ; 55: 128-135, 2017 Apr.
Article En | MEDLINE | ID: mdl-28363142

Gene-silencing miRNA and siRNA are emerging as attractive therapeutics with potential to suppress any genes, which could be especially useful in combination cancer therapy to overcome multidrug resistant (MDR) cancer. Nanomedicine aims to advance cancer treatment through functional nanocarriers that delivers one or more therapeutics to cancer tissue and cells with minimal off-target effects and suitable release kinetics and dosages. Although much effort has gone into developing circulating nanocarriers with targeting functionality for systemic administration, another alternative and straightforward approach is to utilize formulations to be administered directly to the site of action, such as pulmonary and intratumoral delivery. The combination of gene-silencing RNA with drugs in nanocarriers for localized delivery is emerging with promising results. In this review, the current progress and strategies for local co-administration of RNA and drug for synergistic effects and future potential in cancer treatment are presented and discussed. Key advances in RNA-drug anticancer synergy and localized delivery systems were combined with a review of the available literature on local co-administration of RNA and drug for cancer treatment. It is concluded that advanced delivery systems for local administration of gene-silencing RNA and drug hold potential in treatment of cancer, depending on indication. In particular, there are promising developments using pulmonary delivery and intratumoral delivery in murine models, but further research should be conducted on other local administration strategies, designs that achieve effective intracellular delivery and maximize synergy and feasibility for clinical use.


Antineoplastic Agents/therapeutic use , Gene Silencing , Genetic Therapy , Neoplasms/genetics , Neoplasms/therapy , RNA, Small Interfering/therapeutic use , Combined Modality Therapy , Humans , MicroRNAs/therapeutic use , RNA, Small Interfering/administration & dosage
15.
Biofouling ; 33(2): 184-194, 2017 02.
Article En | MEDLINE | ID: mdl-28198663

Shortly after a surface is submerged in the sea, a conditioning film is generally formed by adsorption of organic molecules, such as polysaccharides. This could affect transport of molecules and ions between the seawater and the surface. An artificial seawater model system was developed to understand how adsorbed polysaccharides impact copper binding by glutaraldehyde-crosslinked polyethyleneimine coatings. Coating performance was also determined when competed against copper-chelating EDTA. Polysaccharide adsorption and copper binding and distribution were investigated using advanced analytical techniques, including depth-resolved time-of-flight secondary ion mass spectroscopy, grazing incidence X-ray absorption near-edge spectroscopy, quartz crystal microbalance with dissipation monitoring and X-ray photoelectron spectroscopy. In artificial seawater, the polysaccharides adsorbed in a swollen state that copper readily penetrated and the glutaraldehyde-polyethyleneimine coatings outcompeted EDTA for copper binding. Furthermore, the depth distribution of copper species was determined with nanometre precision. The results are highly relevant for copper-binding and copper-releasing materials in seawater.


Copper/analysis , Edetic Acid/chemistry , Glutaral/chemistry , Polyethyleneimine/chemistry , Polysaccharides/chemistry , Seawater/chemistry , Adsorption , Biofouling/prevention & control , Cross-Linking Reagents/chemistry , Ions , Ligands , Models, Chemical , Surface Properties , Water Pollution, Chemical/prevention & control
16.
J Lipid Res ; 58(5): 840-852, 2017 05.
Article En | MEDLINE | ID: mdl-28159869

Plasma apoC-III levels correlate with triglyceride (TG) levels and are a strong predictor of CVD outcomes. ApoC-III elevates TG in part by inhibiting LPL. ApoC-III likely inhibits LPL by competing for lipid binding. To probe this, we used oil-drop tensiometry to characterize binding of six apoC-III variants to lipid/water interfaces. This technique monitors the dependence of lipid binding on surface pressure, which increases during TG hydrolysis by LPL. ApoC-III adsorption increased surface pressure by upward of 18 mN/m at phospholipid/TG/water interfaces. ApoC-III was retained to high pressures at these interfaces, desorbing at 21-25 mN/m. Point mutants, which substituted alanine for aromatic residues, impaired the lipid binding of apoC-III. Adsorption and retention pressures decreased by 1-6 mN/m in point mutants, with the magnitude determined by the location of alanine substitutions. Trp42 was most critical to mediating lipid binding. These results strongly correlate with our previous results, linking apoC-III point mutants to increased LPL binding and activity at lipid surfaces. We propose that aromatic residues in the C-terminal half of apoC-III mediate binding to TG-rich lipoproteins. Increased apoC-III expression in the hypertriglyceridemic state allows apoC-III to accumulate on lipoproteins and inhibit LPL by preventing binding and/or access to substrate.


Apolipoprotein C-II/chemistry , Apolipoprotein C-II/metabolism , Lipid Metabolism , Lipoprotein Lipase/antagonists & inhibitors , Adsorption , Amino Acid Sequence , Apolipoprotein C-II/genetics , Humans , Mutation , Structure-Activity Relationship , Triglycerides/metabolism
17.
ACS Omega ; 2(8): 4751-4759, 2017 Aug 31.
Article En | MEDLINE | ID: mdl-31457758

Nanometer-thin coatings of polyhydroquinone (PHQ), which release and absorb protons upon oxidation and reduction, respectively, were tested for electrochemically induced anti-biofouling activity under the hypothesis that a dynamic pH environment would discourage fouling. Antifouling tests in artificial seawater using the marine, biofilm-forming bacterium Vibrio alginolyticus proved the coatings to be ineffective in fouling prevention but revealed a deceiving artifact from the reactive species generated at the counter electrode (CE), even for electrochemical bias potentials as low as |400| mV versus Ag|AgCl. These findings provide valuable information on the preparation of nanothin PHQ coatings and their electrochemical behavior in artificial seawater. The results further demonstrate that it is critical to isolate the CE in electrochemical anti-biofouling testing.

18.
J Lipid Res ; 58(1): 216-225, 2017 01.
Article En | MEDLINE | ID: mdl-27811232

In mice lacking glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 (GPIHBP1), the LPL secreted by adipocytes and myocytes remains bound to heparan sulfate proteoglycans (HSPGs) on all cells within tissues. That observation raises a perplexing issue: Why isn't the freshly secreted LPL in wild-type mice captured by the same HSPGs, thereby preventing LPL from reaching GPIHBP1 on capillaries? We hypothesized that LPL-HSPG interactions are transient, allowing the LPL to detach and move to GPIHBP1 on capillaries. Indeed, we found that LPL detaches from HSPGs on cultured cells and moves to: 1) soluble GPIHBP1 in the cell culture medium; 2) GPIHBP1-coated agarose beads; and 3) nearby GPIHBP1-expressing cells. Movement of HSPG-bound LPL to GPIHBP1 did not occur when GPIHBP1 contained a Ly6 domain missense mutation (W109S), but was almost normal when GPIHBP1's acidic domain was mutated. To test the mobility of HSPG-bound LPL in vivo, we injected GPIHBP1-coated agarose beads into the brown adipose tissue of GPIHBP1-deficient mice. LPL moved quickly from HSPGs on adipocytes to GPIHBP1-coated beads, thereby depleting LPL stores on the surface of adipocytes. We conclude that HSPG-bound LPL in the interstitial spaces of tissues is mobile, allowing the LPL to move to GPIHBP1 on endothelial cells.


Adipocytes/metabolism , Heparan Sulfate Proteoglycans/metabolism , Lipoprotein Lipase/genetics , Receptors, Lipoprotein/genetics , Animals , Capillaries/enzymology , Capillaries/metabolism , Cell Line , Chylomicrons/metabolism , Culture Media/chemistry , Hep G2 Cells , Humans , Lipolysis/genetics , Lipoprotein Lipase/metabolism , Mice
19.
J Lipid Res ; 58(1): 208-215, 2017 01.
Article En | MEDLINE | ID: mdl-27875259

GPIHBP1, an endothelial cell protein, binds LPL in the interstitial spaces and shuttles it to its site of action inside blood vessels. For years, studies of human GPIHBP1 have been hampered by an absence of useful antibodies. We reasoned that monoclonal antibodies (mAbs) against human GPIHBP1 would be useful for 1) defining the functional relevance of GPIHBP1's Ly6 and acidic domains to the binding of LPL; 2) ascertaining whether human GPIHBP1 is expressed exclusively in capillary endothelial cells; and 3) testing whether GPIHBP1 is detectable in human plasma. Here, we report the development of a panel of human GPIHBP1-specific mAbs. Two mAbs against GPIHBP1's Ly6 domain, RE3 and RG3, abolished LPL binding, whereas an antibody against the acidic domain, RF4, did not. Also, mAbs RE3 and RG3 bound with reduced affinity to a mutant GPIHBP1 containing an Ly6 domain mutation (W109S) that abolishes LPL binding. Immunohistochemistry studies with the GPIHBP1 mAbs revealed that human GPIHBP1 is expressed only in capillary endothelial cells. Finally, we created an ELISA that detects GPIHBP1 in human plasma. That ELISA should make it possible for clinical lipidologists to determine whether plasma GPIHBP1 levels are a useful biomarker of metabolic or vascular disease.


Antibodies, Monoclonal/immunology , Lipoprotein Lipase/immunology , Receptors, Lipoprotein/immunology , Triglycerides/metabolism , Animals , Binding Sites/immunology , Cell Line , Drosophila , Endothelial Cells/enzymology , Endothelial Cells/immunology , Humans , Lipoprotein Lipase/antagonists & inhibitors , Lipoprotein Lipase/isolation & purification , Mice , Receptors, Lipoprotein/genetics , Triglycerides/immunology
20.
Elife ; 52016 12 08.
Article En | MEDLINE | ID: mdl-27929370

Lipoprotein lipase (LPL) undergoes spontaneous inactivation via global unfolding and this unfolding is prevented by GPIHBP1 (Mysling et al., 2016). We now show: (1) that ANGPTL4 inactivates LPL by catalyzing the unfolding of its hydrolase domain; (2) that binding to GPIHBP1 renders LPL largely refractory to this inhibition; and (3) that both the LU domain and the intrinsically disordered acidic domain of GPIHBP1 are required for this protective effect. Genetic studies have found that a common polymorphic variant in ANGPTL4 results in lower plasma triglyceride levels. We now report: (1) that this ANGPTL4 variant is less efficient in catalyzing the unfolding of LPL; and (2) that its Glu-to-Lys substitution destabilizes its N-terminal α-helix. Our work elucidates the molecular basis for regulation of LPL activity by ANGPTL4, highlights the physiological relevance of the inherent instability of LPL, and sheds light on the molecular defects in a clinically relevant variant of ANGPTL4.


Angiopoietin-Like Protein 4/metabolism , Lipoprotein Lipase/metabolism , Protein Folding , Receptors, Lipoprotein/metabolism , Angiopoietin-Like Protein 4/genetics , Lipoprotein Lipase/chemistry , Mass Spectrometry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Domains , Protein Interaction Mapping
...