Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 128, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974271

RESUMEN

BACKGROUND: With the emergence of deep-learning methods, tools are needed to capture and standardize image annotations made by experimentalists. In developmental biology, cell lineages are generally reconstructed from time-lapse data. However, some tissues need to be fixed to be accessible or to improve the staining. In this case, classical software do not offer the possibility of generating any lineage. Because of their rigid cell walls, plants present the advantage of keeping traces of the cell division history over successive generations in the cell patterns. To record this information despite having only a static image, dedicated tools are required. RESULTS: We developed an interface to assist users in the building and editing of a lineage tree from a 3D labeled image. Each cell within the tree can be tagged. From the created tree, cells of a sub-tree or cells sharing the same tag can be extracted. The tree can be exported in a format compatible with dedicated software for advanced graph visualization and manipulation. CONCLUSIONS: The TreeJ plugin for ImageJ/Fiji allows the user to generate and manipulate a lineage tree structure. The tree is compatible with other software to analyze the tree organization at the graphical level and at the cell pattern level. The code source is available at https://github.com/L-EL/TreeJ .

2.
Elife ; 112022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36444654

RESUMEN

Noise plays a major role in cellular processes and in the development of tissues and organs. Several studies have examined the origin, the integration or the accommodation of noise in gene expression, cell growth and elaboration of organ shape. By contrast, much less is known about variability in cell division plane positioning, its origin and links with cell geometry, and its impact on tissue organization. Taking advantage of the first-stereotyped-then-variable division patterns in the embryo of the model plant Arabidopsis thaliana, we combined 3D imaging and quantitative cell shape and cell lineage analysis together with mathematical and computer modeling to perform a large-scale, systematic analysis of variability in division plane orientation. Our results reveal that, paradoxically, variability in cell division patterns of Arabidopsis embryos is accompanied by a progressive reduction of heterogeneity in cell shape topology. The paradox is solved by showing that variability operates within a reduced repertoire of possible division plane orientations that is related to cell geometry. We show that in several domains of the embryo, a recently proposed geometrical division rule recapitulates observed variable patterns, suggesting that variable patterns emerge from deterministic principles operating in a variable geometrical context. Our work highlights the importance of emerging patterns in the plant embryo under iterated division principles, but also reveal domains where deviations between rule predictions and experimental observations point to additional regulatory mechanisms.


Asunto(s)
Arabidopsis , Arabidopsis/genética , División Celular , Desarrollo Embrionario , Simulación por Computador , Computadores
3.
Commun Biol ; 3(1): 605, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097821

RESUMEN

Cell biology relies largely on reproducible visual observations. Unlike cell culture, tissues are heterogeneous, making difficult the collection of biological replicates that would spotlight a precise location. In consequence, there is no standard approach for estimating the statistical significance of an observed pattern in a tissue sample. Here, we introduce SET (for Synthesis of Epithelial Tissue), a method that can accurately reconstruct the cell tessellation formed by an epithelium in a microscopy image as well as thousands of alternative synthetic tessellations made of the exact same cells. SET can build an accurate null distribution to statistically test if any local pattern is necessarily the result of a process, or if it could be explained by chance in the given context. We provide examples in various tissues where visible, and invisible, cell and subcellular patterns are unraveled in a statistically significant manner using a single image and without any parameter settings.


Asunto(s)
Fenómenos Fisiológicos Celulares/fisiología , Células Epiteliales/citología , Epitelio/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Biológicos , Animales , Biología Computacional , Simulación por Computador , Células Epiteliales/fisiología , Ratones , Microscopía , Propiedades de Superficie
4.
Science ; 356(6334): 186-189, 2017 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-28408602

RESUMEN

Controlling cell division plane orientation is essential for morphogenesis in multicellular organisms. In plant cells, the future cortical division plane is marked before mitotic entry by the preprophase band (PPB). Here, we characterized an Arabidopsis trm (TON1 Recruiting Motif) mutant that impairs PPB formation but does not affect interphase microtubules. Unexpectedly, PPB disruption neither abolished the capacity of root cells to define a cortical division zone nor induced aberrant cell division patterns but rather caused a loss of precision in cell division orientation. Our results advocate for a reassessment of PPB function and division plane determination in plants and show that a main output of this microtubule array is to limit spindle rotations in order to increase the robustness of cell division.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Raíces de Plantas/fisiología , Profase/fisiología , Huso Acromático/fisiología , Secuencias de Aminoácidos/genética , Secuencias de Aminoácidos/fisiología , Afidicolina/metabolismo , Proteínas de Arabidopsis/genética , Cinesinas , Proteínas Asociadas a Microtúbulos/genética , Raíces de Plantas/citología , Rotación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA