Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Proteomics ; 261: 104579, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35398365

RESUMEN

The fibroin-based silk fibers of weaver ants are an alternative biomaterial to be investigated and explored for potential biomedical applications. In this context, the silk fibers from the nest of the weaver ant Camponotus textor was solubilized and fractionated by gel permeation. The different fractions were collected, pooled and submitted to analysis with a series of biochemical methods, nuclear magnetic resonance (NMR) spectroscopy, analytical proteomic strategies, and data treatment with bioinformatic tools to perform the structural characterization of the fibroin-based silk fibers produced by the ant. Our data demonstrated the identification of one fibroin proteoform in the ant silk fibers. The protein chracterized as a glycoprotein with MW around 40 kDa and presenting 66% (w/w) of total sugars attached to it through O-linked carbohydrates. The 3D of protein was modeled, revealing a structure predominantly constituted of coiled-coil secondary units in the whole model, featuring at least four superhelices (arrangement with multiple α-helices). The scientific outcomes reported herein may be relevant for the development of novel approaches for the synthetic or recombinant production of novel silk-based polymers for biomedical applications. BIOLOGICAL SIGNIFICANCE: The present investigation significantly expanded knowledge regarding to the fibroin-based silk fibers from weaver ants, contributing to improvements in our understanding of the properties and characteristics of these silk fibers. For example, as reported here, carbohydrates were detected in the ants' silk for the first time presenting the fibroin as a glycoprotein. Moreover, the 3D structure provided new insights into the secondary structures considering the whole model of the protein.


Asunto(s)
Hormigas , Bombyx , Fibroínas , Animales , Carbohidratos , Proteómica , Seda/química
2.
Insect Biochem Mol Biol ; 105: 10-24, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30582958

RESUMEN

Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sensitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2.


Asunto(s)
Venenos de Artrópodos/enzimología , Himenópteros/enzimología , Mordeduras y Picaduras de Insectos/inmunología , Fosfolipasas A1/inmunología , Fosfolipasas A2/inmunología , Secuencia de Aminoácidos , Animales , Venenos de Artrópodos/inmunología , Humanos , Mordeduras y Picaduras de Insectos/enzimología , Fosfolipasas A1/química , Fosfolipasas A1/metabolismo , Fosfolipasas A2/química , Fosfolipasas A2/metabolismo
3.
Toxicon ; 148: 172-196, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29715467

RESUMEN

Among venomous animals, Hymenoptera have been suggested as a rich source of natural toxins. Due to their broad ecological diversity, venom from Hymenoptera insects (bees, wasps and ants) have evolved differentially thus widening the types and biological functions of their components. To date, insect toxinology analysis have scarcely uncovered the complex composition of bee, wasp and ant venoms which include low molecular weight compounds, highly abundant peptides and proteins, including several allergens. In Hymenoptera, these complex mixtures of toxins represent a potent arsenal of biological weapons that are used for self-defense, to repel intruders and to capture prey. Consequently, Hymenoptera venom components have a broad range of pharmacological targets and have been extensively studied, as promising sources of new drugs and biopesticides. In addition, the identification and molecular characterization of Hymenoptera venom allergens have allowed for the rational design of component-resolved diagnosis of allergy, finally improving the outcome of venom immunotherapy (VIT). Until recently, a limited number of Hymenoptera venoms had been unveiled due to the technical limitations of the approaches used to date. Nevertheless, the application of novel techniques with high dynamic range has significantly increased the number of identified peptidic and proteinaceous toxins. Considering this, the present review summarizes the current knowledge about the most representative Hymenoptera venom peptides and proteins which are under study for a better understanding of the insect-caused envenoming process and the development of new drugs and biopesticides.


Asunto(s)
Venenos de Artrópodos/química , Venenos de Artrópodos/toxicidad , Himenópteros/química , Animales , Venenos de Artrópodos/farmacología , Proteínas de Insectos/química , Proteínas de Insectos/farmacología , Proteínas de Insectos/toxicidad , Péptidos/química , Péptidos/farmacología , Péptidos/toxicidad
4.
Toxins (Basel) ; 9(9)2017 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-28837089

RESUMEN

Polybia paulista (Hymenoptera: Vespidae) is responsible for a high number of sting accidents and anaphylaxis events in Southeast Brazil, Argentina and Paraguay. The specific detection of allergy to the venom of this wasp is often hampered by the lack of recombinant allergens currently available for molecular diagnosis. Antigen 5 (~23 kDa) from P. paulista venom (Poly p 5) is a highly abundant and glycosylated allergenic protein that could be used for development of component-resolved diagnosis (CRD). Here, we describe the cloning and heterologous expression of the antigen 5 (rPoly p 5) from P. paulista venom using the eukaryotic system Pichia pastoris. The expression as a secreted protein yielded high levels of soluble rPoly p 5. The recombinant allergen was further purified to homogeneity (99%) using a two-step chromatographic procedure. Simultaneously, the native form of the allergen (nPoly p 5) was purified from the wasp venom by Ion exchange chromatography. The rPoly p 5 and nPoly p 5 were then submitted to a comparative analysis of IgE-mediated immunodetection using sera from patients previously diagnosed with sensitization to wasp venoms. Both rPoly p 5 and nPoly p 5 were recognized by specific IgE (sIgE) in the sera of the allergic individuals. The high levels of identity found between nPoly p 5 and rPoly p 5 by the alignment of its primary sequences as well as by 3-D models support the results obtained in the immunoblot. Overall, we showed that P. pastoris is a suitable system for production of soluble rPoly p 5 and that the recombinant allergen represents a potential candidate for molecular diagnosis of P.paulista venom allergy.


Asunto(s)
Alérgenos , Venenos de Avispas/química , Alérgenos/química , Alérgenos/genética , Alérgenos/inmunología , Alérgenos/aislamiento & purificación , Humanos , Hipersensibilidad/diagnóstico , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Modelos Moleculares , Pichia/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Venenos de Avispas/genética , Venenos de Avispas/inmunología , Venenos de Avispas/aislamiento & purificación
5.
J Proteomics ; 161: 88-103, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28435107

RESUMEN

Polybia paulista (Hymenoptera: Vespidae) is a neotropical social wasp from southeast Brazil. As most social Hymenoptera, venom from P. paulista comprises a complex mixture of bioactive toxins ranging from low molecular weight compounds to peptides and proteins. Several efforts have been made to elucidate the molecular composition of the P. paulista venom. Data derived from proteomic, peptidomic and allergomic analyses has enhanced our understanding of the whole envenoming process caused by the insect sting. The combined use of bioinformatics, -omics- and molecular biology tools have allowed the identification, characterization, in vitro synthesis and recombinant expression of several wasp venom toxins. Some of these P. paulista - derived bioactive compounds have been evaluated for the rational design of antivenoms and the improvement of allergy specific diagnosis and immunotherapy. Molecular characterization of crude venom extract has enabled the description and isolation of novel toxins with potential biotechnological applications. Here, we review the different approaches that have been used to unravel the venom composition of P. paulista. We also describe the main groups of P. paulista - venom toxins currently identified and analyze their potential in the development of component-resolved diagnosis of allergy, and in the rational design of antivenoms and novel bioactive drugs.


Asunto(s)
Proyectos de Investigación , Venenos de Avispas/química , Avispas/patogenicidad , Animales , Antivenenos/química , Hipersensibilidad/diagnóstico , Hipersensibilidad/terapia , Mordeduras y Picaduras de Insectos , Proteómica/métodos , Proyectos de Investigación/tendencias , Venenos de Avispas/toxicidad
6.
Biotechnol Appl Biochem ; 48(Pt 3): 159-65, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17523917

RESUMEN

Human proteins are not routinely expressed at high levels in Escherichia coli for, among other reasons, different codon usage. Several purification procedures have been applied to recover recombinant proteins for further biological characterization. However, the vast majority involve costly chromatography procedures. In the present study, both (Hu)IFN(alpha 2b) (human interferon alpha 2b) and (Hu)IFN(alpha 8) were expressed efficiently in E. coli BL21-codonplus-RIL. Subsequently, both recombinant proteins were purified to homogeneity by passive elution from reverse-stained SDS/PAGE gels, a cost-effective purification procedure. After purification, both recovered proteins were biologically active. The (Hu)IFN(alpha 8) subtype induced 1.46-fold more antiviral activity than (Hu)IFN(alpha 2b) using Hep-2 human laryngeal carcinoma cell challenged with Mengo virus.


Asunto(s)
Antivirales/farmacología , Interferón-alfa/farmacología , Interferones/fisiología , Mengovirus/efectos de los fármacos , Mengovirus/inmunología , Secuencia de Aminoácidos , Secuencia de Bases , Línea Celular Tumoral , Escherichia coli , Humanos , Interferón alfa-2 , Interferón-alfa/biosíntesis , Interferón-alfa/genética , Interferones/biosíntesis , Interferones/genética , Datos de Secuencia Molecular , Proteínas Recombinantes
7.
J Biotechnol ; 127(1): 109-14, 2006 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16893582

RESUMEN

Opc is an outer membrane protein from Neisseria meningitidis present in meningococcal vaccine preparations. The opc gene, codifying for this protein, was cloned in to Escherichia coli and the Opc protein was expressed under the control of a tryptophan promoter. The recombinant strain was grown in batch cultures. Opc was expressed as inclusion bodies at about 32% of the total cellular protein. We examined the scale-up culture conditions for the production of the recombinant Opc. The scale-up process was performed from 1.5 l to 50 l culture, using first, the constant power per unit of volume (P/V) as main scaling criteria, and then the oxygen mass transfer coefficient (K(L)a) scaling criteria to adjust the optimal aeration conditions. A final productivity of 52 mgl(-1)h(-1) was obtained at the 50l culture scale compared with the 49 mgl(-1)h(-1) productivity at 1.5l laboratory scale.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Vacunas Meningococicas/biosíntesis , Proteínas Recombinantes/biosíntesis , Tecnología Farmacéutica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Meningitis Meningocócica/prevención & control , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...