Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros











Intervalo de año de publicación
1.
Neuropharmacology ; 257: 110058, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38960135

RESUMEN

Postnatal hippocampal neurogenesis is essential for learning and memory. Hippocampal neural precursor cells (NPCs) can be induced to proliferate and differentiate into either glial cells or dentate granule cells. Notably, hippocampal neurogenesis decreases dramatically with age, partly due to a reduction in the NPC pool and a decrease in their proliferative activity. Alpha-melanocyte-stimulating hormone (α-MSH) improves learning, memory, neuronal survival and plasticity. Here, we used postnatally-isolated hippocampal NPCs from Wistar rat pups (male and female combined) to determine the role of the melanocortin analog [Nle4, D-Phe7]-α-MSH (NDP-MSH) in proliferation and fate acquisition of NPCs. Incubation of growth-factor deprived NPCs with 10 nM NDP-MSH for 6 days increased the proportion of Ki-67- and 5-bromo-2'-deoxyuridine (BrdU)-positive cells, compared to the control group, and these effects were blocked by the MC4R antagonist JKC-363. NDP-MSH also increased the proportion of glial fibrillar acidic protein (GFAP)/Ki-67, GFAP/sex-determining region Y-box2 (SOX2) and neuroepithelial stem cell protein (NESTIN)/Ki-67-double positive cells (type-1 and type-2 precursors). Finally, NDP-MSH induced peroxisome proliferator-activated receptor (PPAR)-γ protein expression, and co-incubation with the PPAR-γ inhibitor GW9662 prevented the effect of NDP-MSH on NPC proliferation and differentiation. Our results indicate that in vitro activation of MC4R in growth-factor-deprived postnatal hippocampal NPCs induces proliferation and promotes the relative expansion of the type-1 and type-2 NPC pool through a PPAR-γ-dependent mechanism. These results shed new light on the mechanisms underlying the beneficial effects of melanocortins in hippocampal plasticity and provide evidence linking the MC4R and PPAR-γ pathways in modulation of hippocampal NPC proliferation and differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Hipocampo , Células-Madre Neurales , Neurogénesis , Ratas Wistar , Receptor de Melanocortina Tipo 4 , alfa-MSH , Animales , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/citología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Receptor de Melanocortina Tipo 4/metabolismo , alfa-MSH/farmacología , alfa-MSH/análogos & derivados , Femenino , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/fisiología , Masculino , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Ratas , Células Cultivadas , Factores de Transcripción SOXB1/metabolismo , Animales Recién Nacidos , Proteína Ácida Fibrilar de la Glía/metabolismo , PPAR gamma/metabolismo
2.
Neuropharmacology ; 253: 109969, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38688422

RESUMEN

This study aimed to develop polysorbate 80-coated chitosan nanoparticles (PS80/CS NPs) as a delivery system for improved brain targeting of α-Melanocyte Stimulating Hormone analog (NDP-MSH). Chitosan nanoparticles loaded with NDP-MSH were surface-modified with polysorbate 80 ([NDP-MSH]-PS80/CS NP), which formed a flattened layer on their surface. Nanoparticle preparation involved ionic gelation, followed by characterization using scanning electron microscopy (SEM) for morphology, dynamic light scattering (DLS) for colloidal properties, and ATR-FTIR spectroscopy for structure. Intraperitoneal injection of FITC-PS80/CS NPs and [NDP-MSH]-PS80/CS NP in rats demonstrated their ability to cross the blood-brain barrier, reach the brain, and accumulate in CA1 neurons of the dorsal hippocampus within 2 h. Two experimental models of neuroinflammation were employed with Male Wistar rats: a short-term model involving high-fat diet (HFD) consumption for 5 days followed by an immune stimulus with LPS, and a long-term model involving HFD consumption for 8 weeks. In both models, [NDP-MSH]-PS80/CS NPs could reverse the decreased expression of contextual fear memory induced by the diets. These findings suggest that [NDP-MSH]-PS80/CS NPs offer a promising strategy to overcome the limitations of NDP-MSH regarding pharmacokinetics and enzymatic stability. By facilitating NDP-MSH delivery to the hippocampus, these nanoparticles can potentially mitigate the cognitive impairments associated with HFD consumption and neuroinflammation.


Asunto(s)
Encéfalo , Quitosano , Disfunción Cognitiva , Dieta Alta en Grasa , Nanopartículas , Polisorbatos , Ratas Wistar , alfa-MSH , Animales , Quitosano/administración & dosificación , Quitosano/química , Masculino , alfa-MSH/administración & dosificación , alfa-MSH/análogos & derivados , Polisorbatos/química , Polisorbatos/administración & dosificación , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/tratamiento farmacológico , Nanopartículas/administración & dosificación , Dieta Alta en Grasa/efectos adversos , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Ratas
3.
Artículo en Inglés | MEDLINE | ID: mdl-37916625

RESUMEN

Astrocytes are glial cells that perform several fundamental physiological functions within the brain. They can control neuronal activity and levels of ions and neurotransmitters, and release several factors that modulate the brain environment. Over the past few decades, our knowledge of astrocytes and their functions has rapidly evolved. Neurodegenerative diseases are characterized by selective degeneration of neurons, increased glial activation, and glial dysfunction. Given the significant role played by astrocytes, there is growing interest in their potential therapeutic role. However, defining their contribution to neurodegeneration is more complex than was previously thought. This review summarizes the main functions of astrocytes and their involvement in neurodegenerative diseases, highlighting their neurotoxic and neuroprotective ability.

4.
Neuropharmacology ; 239: 109688, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591460

RESUMEN

High-fat diet (HFD) consumption is associated with cognitive deficits and neurodegenerative diseases. Since the hippocampus is extremely sensitive to pathophysiological changes, neuroinflammation and the concomitant oxidative stress induced by HFD can significantly interfere with hippocampal-dependent functions related to learning and memory. The neuropeptide alpha-melanocyte stimulating hormone (α-MSH) mediates neuroprotective actions in the central nervous system and can reverse the effects of neuroinflammation in cognitive functions that depend on the hippocampus. In this study, we used male Wistar rats to evaluate the effect of short-term HFD intake (5 days) plus a mild immune challenge, Lipopolysaccharide (LPS 10 µg/kg) on contextual fear, changes in structural plasticity, oxidative stress, and astrocyte reactivation in the hippocampus. We also determined the possible modulatory role of α-MSH. HFD consumption was associated with an increase in markers of oxidative stress (Advanced oxidation protein products and Malondialdehyde) in the dorsal hippocampus (DH). We also found changes in hippocampal structural synaptic plasticity, observing a decrease in total spine in the DH after HFD plus LPS. We observed astrocyte proliferation and a significant increase in the percentage of the area occupied by GFAP. Treatment with α-MSH (0.1 µg/0.25 µl) in the DH reversed the effect of short-term HFD plus LPS on contextual fear memory, oxidative stress, and spine density. α-MSH also reduced astrocyte proliferation. Our present results indicate that HFD consumption for a short period sensitizes the central nervous system (CNS) to a subsequent immune challenge and impairs contextual fear memory and that α-MSH could have a modulatory protective effect.


Asunto(s)
Astrocitos , alfa-MSH , Masculino , Ratas , Animales , Ratas Wistar , Dieta Alta en Grasa/efectos adversos , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Trastornos de la Memoria/etiología , Hipocampo , Plasticidad Neuronal
5.
Neural Regen Res ; 18(7): 1404-1410, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36571334

RESUMEN

In light of the rising evidence of the association between viral and bacterial infections and neurodegeneration, we aimed at revisiting the infectious hypothesis of Alzheimer's disease and analyzing the possible implications of COVID-19 neurological sequelae in long-term neurodegeneration. We wondered how SARS-CoV-2 could be related to the amyloid-ß cascade and how it could lead to the pathological hallmarks of the disease. We also predict a paradigm change in clinical medicine, which now has a great opportunity to conduct prospective surveillance of cognitive sequelae and progression to dementia in people who suffered severe infections together with other risk factors for Alzheimer's disease.

6.
J Neurochem ; 161(4): 366-382, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411603

RESUMEN

Subtype 3 metabotropic glutamate receptor (mGlu3R) displays a broad range of neuroprotective effects. We previously demonstrated that mGlu3R activation in astrocytes protects hippocampal neurons from Aß neurotoxicity through stimulation of both neurotrophin release and Aß uptake. Alternative-spliced variants of mGlu3R were found in human brains. The most prevalent variant, mGlu3Δ4, lacks exon 4 encoding the transmembrane domain and can inhibit ligand binding to mGlu3R. To date, neither its role in neurodegenerative disorders nor its endogenous expression in CNS cells has been addressed. The present paper describes for the first time an association between altered hippocampal expression of mGlu3Δ4 and Alzheimer's disease (AD) in the preclinical murine model PDAPP-J20, as well as a deleterious effect of mGlu3Δ4 in astrocytes. As assessed by western blot, hippocampal mGlu3R levels progressively decreased with age in PDAPP-J20 mice. On the contrary, mGlu3Δ4 levels were drastically increased with aging in nontransgenic mice, but prematurely over-expressed in 5-month-old PDAPP-J20-derived hippocampi, prior to massive senile plaque deposition. Also, we found that mGlu3Δ4 co-precipitated with mGlu3R mainly in 5-month-old PDAPP-J20 mice. We further showed by western blot that primary cultured astrocytes and neurons expressed mGlu3Δ4, whose levels were reduced by Aß, thereby discouraging a causal effect of Aß on mGlu3Δ4 induction. However, heterologous expression of mGlu3Δ4 in astrocytes induced cell death, inhibited mGlu3R expression, and prevented mGlu3R-dependent Aß glial uptake. Indeed, mGlu3Δ4 promoted neurodegeneration in neuron-glia co-cultures. These results provide evidence of an inhibitory role of mGlu3Δ4 in mGlu3R-mediated glial neuroprotective pathways, which may lie behind AD onset.


Asunto(s)
Enfermedad de Alzheimer , Receptores de Glutamato Metabotrópico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Células Cultivadas , Ratones , Ratones Transgénicos , Isoformas de Proteínas/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo
7.
Curr Neuropharmacol ; 20(6): 1116-1143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34852742

RESUMEN

Huntington's disease (HD) is a neurodegenerative genetic disorder caused by a CAG repeat expansion in the huntingtin gene. HD causes motor, cognitive, and behavioral dysfunction. Since no existing treatment affects the course of this disease, new treatments are needed. Inflammation is frequently observed in HD patients before symptom onset. Neuroinflammation, characterized by the presence of reactive microglia, astrocytes and inflammatory factors within the brain, is also detected early. However, in comparison to other neurodegenerative diseases, the role of neuroinflammation in HD is much less known. Work has been dedicated to altered microglial and astrocytic functions in the context of HD, but less attention has been given to glial participation in neuroinflammation. This review describes evidence of inflammation in HD patients and animal models. It also discusses recent knowledge on neuroinflammation in HD, highlighting astrocyte and microglia involvement in the disease and considering anti-inflammatory therapeutic approaches.


Asunto(s)
Enfermedad de Huntington , Animales , Astrocitos , Modelos Animales de Enfermedad , Humanos , Inflamación/genética , Microglía , Enfermedades Neuroinflamatorias
8.
J Steroid Biochem Mol Biol ; 208: 105792, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33246155

RESUMEN

Acyl-CoA synthetase 4 (Acsl4), an enzyme involved in arachidonic acid (AA) metabolism, participates in physiological and pathological processes such as steroidogenesis and cancer. The role of Acsl4 in neurons and in nervous system development has also been documented but little is known regarding its functionality in glial cells. In turn, several processes in glial cells, including neurosteroidogenesis, stellation and AA uptake, are regulated by cyclic adenosine monophosphate (cAMP) signal. In this context, the aim of this work was to analyze the expression and functional role of Acsl4 in primary rat astrocyte cultures and in the C6 glioma cell line by chemical inhibition and stable silencing, respectively. Results show that Acsl4 expression was regulated by cAMP in both models and that cAMP stimulation of steroidogenic acute regulatory protein mRNA levels was reduced by Acsl4 inhibition or silencing. Also, Acsl4 inhibition reduced progesterone synthesis stimulated by cAMP and also affected cAMP-induced astrocyte stellation, decreasing process elongation and increasing branching complexity. Similar effects were observed for Acsl4 silencing on cAMP-induced C6 cell morphological shift. Moreover, Acsl4 inhibition and silencing reduced proliferation and migration of both cell types. Acsl4 silencing in C6 cells reduced the capacity for colony proliferation and neurosphere formation, the latter ability also being abolished by Acsl4 inhibition. In sum, this work presents novel evidence of Acsl4 involvement in neurosteroidogenesis and the morphological changes of glial cells promoted by cAMP. Furthermore, Acsl4 participates in migration and proliferation, also affecting cell self-renewal. Altogether, these findings provide insights into Acsl4 functions in glial cells.


Asunto(s)
Ácido Araquidónico/genética , Coenzima A Ligasas/genética , Neuroglía/metabolismo , Animales , Ácido Araquidónico/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Coenzima A Ligasas/metabolismo , AMP Cíclico/genética , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Glioma/patología , Humanos , Neuroglía/patología , Ratas
9.
J Neuroinflammation ; 17(1): 290, 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33023623

RESUMEN

BACKGROUND: Evidence shows significant heterogeneity in astrocyte gene expression and function. We previously demonstrated that brain-derived neurotrophic factor (BDNF) exerts protective effects on whole brain primary cultured rat astrocytes treated with 3-nitropropionic acid (3NP), a mitochondrial toxin widely used as an in vitro model of Huntington's disease (HD). Therefore, we now investigated 3NP and BDNF effects on astrocytes from two areas involved in HD: the striatum and the entire cortex, and their involvement in neuron survival. METHODS: We prepared primary cultured rat cortical or striatal astrocytes and treated them with BDNF and/or 3NP for 24 h. In these cells, we assessed expression of astrocyte markers, BDNF receptor, and glutamate transporters, and cytokine release. We prepared astrocyte-conditioned medium (ACM) from cortical and striatal astrocytes and tested its effect on a cellular model of HD. RESULTS: BDNF protected astrocytes from 3NP-induced death, increased expression of its own receptor, and activation of ERK in both cortical and striatal astrocytes. However, BDNF modulated glutamate transporter expression differently by increasing GLT1 and GLAST expression in cortical astrocytes but only GLT1 expression in striatal astrocytes. Striatal astrocytes released higher amounts of tumor necrosis factor-α than cortical astrocytes in response to 3NP but BDNF decreased this effect in both populations. 3NP decreased transforming growth factor-ß release only in cortical astrocytes, whereas BDNF treatment increased its release only in striatal astrocytes. Finally, we evaluated ACM effect on a cellular model of HD: the rat striatal neuron cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15). Neither striatal nor cortical ACM modified the viability of Q15 cells. Only ACM from striatal astrocytes treated with BDNF and ACM from 3NP + BDNF-treated striatal astrocytes protected Q120 cells, whereas ACM from cortical astrocytes did not. CONCLUSIONS: Data suggest that cortical and striatal astrocytes respond differently to mitochondrial toxin 3NP and BDNF. Moreover, striatal astrocytes secrete soluble neuroprotective factors in response to BDNF that selectively protect neurons expressing mutant huntingtin implicating that BDNF modulation of striatal astrocyte function has therapeutic potential against neurodegeneration.


Asunto(s)
Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/toxicidad , Corteza Cerebral/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/biosíntesis , Nitrocompuestos/toxicidad , Propionatos/toxicidad , Animales , Animales Recién Nacidos , Astrocitos/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Cuerpo Estriado/efectos de los fármacos , Femenino , Expresión Génica , Humanos , Proteína Huntingtina/genética , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación/efectos de los fármacos , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Ratas , Ratas Wistar
10.
Neurochem Int ; 140: 104837, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858088

RESUMEN

Astrocytes play a key role by providing antioxidant support to nearby neurons under oxidative stress. We have previously demonstrated that in vitro astroglial subtype 3 metabotropic glutamate receptor (mGlu3R) is neuroprotective. However, its role during aging has been poorly explored. Our study aimed to determine whether LY379268, an mGlu3R agonist, exerts an antioxidant effect on aged cultured rat astrocytes. Aged cultured astrocytes obtained after 9-weeks (9w) in vitro were positive for ß-galactosidase stain, showed decreased mGlu3R and glutathione (GSH) levels and superoxide dismutase (SOD) activity, while nuclear erythroid factor 2 (Nrf2) protein levels, reactive oxygen species (ROS) production and apoptosis were increased. Treatment of 9w astrocytes with LY379268 resulted in an increase in mGlu3R and Nrf2 protein levels and SOD activity, and decreased mitochondrial ROS levels and apoptosis. mGlu3R activation in aged astrocytes also prevented hippocampal neuronal death induced by Aß1-42 in co-culture assays. We conclude that activation of mGlu3R in aged astrocytes had an anti-oxidant effect and protected hippocampal neurons against Aß-induced neurotoxicity. The present study suggests mGlu3R activation in aging astrocytes as a therapeutic strategy to slow down age-associated neurodegeneration.


Asunto(s)
Antioxidantes/farmacología , Astrocitos/metabolismo , Senescencia Celular/fisiología , Fármacos Neuroprotectores/farmacología , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacología , Animales , Astrocitos/efectos de los fármacos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Senescencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Embarazo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
11.
Neurochem Int ; 131: 104547, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31536785

RESUMEN

The mechanics of ß-amyloid (Aß) clearance by astrocytes has not been univocally described, with different mediators appearing to contribute to this process under different conditions. Our laboratory has demonstrated neuroprotective effects of astroglial subtype 3 metabotropic glutamate receptor (mGlu3R), which are dependent on the secreted form of the amyloid precursor protein (sAPPα) as well as on Aß clearance; however, the mechanism underlying mGlu3R-induced Aß uptake by astrocytes remains unclear. The present study shows that conditioned medium from mGlu3R-stimulated astrocytes increased Aß uptake by naïve astrocytes through a mechanism dependent on sAPPα, since sAPPα depletion from conditioned medium inhibited Aß phagocytosis. Concordantly, recombinant sAPPα also increased Aß uptake. Since we show that both sAPPα and the mGlu3R agonist LY379268 increased expression of class-A scavenger receptor (SR-A) in astrocytes, we next determined whether SR-A mediates mGlu3R- or sAPPα-induced Aß uptake by using astrocyte cultures derived from SR-A knockout mice. We found that the effects of LY379268 as well as sAPPα on Aß uptake were abolished in SR-A-deficient astrocytes, indicating a major role for this scavenger receptor in LY379268- and sAPPα-stimulated Aß clearance by astrocytes. We also show results of coimmunoprecipitation and functional assays offering evidence of possible heterotrimerization of sAPPα with Aß and SR-A which could allow Aß to enter the astrocyte. In conclusion the present paper describes a novel pathway for Aß clearance by astrocytes involving sAPPα as an enhancer of SR-A-dependent Aß phagocytosis.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Depuradores de Clase A/metabolismo , Aminoácidos/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Supervivencia Celular , Células Cultivadas , Medios de Cultivo Condicionados , Humanos , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Fagocitosis , Cultivo Primario de Células , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas , Receptores Depuradores de Clase A/efectos de los fármacos , Receptores Depuradores de Clase A/genética
12.
Behav Brain Res ; 370: 111969, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31128164

RESUMEN

Pro-inflammatory cytokines, particularly Interleukin-1ß (IL-1ß), can affect cognitive processes such as learning and memory. The aim of this study was to establish whether the effect of IL-1ß on contextual fear memory is associated with changes in hippocampal structural plasticity. We also studied the effect of α-melanocyte-stimulating hormone (α-MSH), a potent anti-inflammatory and neuro-protective peptide. Different groups of animals were implanted bilaterally in dorsal hippocampus (DH). After recovery they were conditioned for contextual fear memory and received the different treatments (vehicle, IL-1ß, α-MSH or IL-1ß + α-MSH). Memory was assessed 24 hs after conditioning and immediately after rats were perfused for dendritic spine analysis. Our results show that local hippocampal administration of IL-1ß just after memory encoding induced impairment in contextual memory and a reduction in the total density of CA1 hippocampal dendritic spines, particularly the mature ones. α-MSH administration reversed the IL-1ß induced changes. The results suggest that neuro-inflammation induced by IL-1ß interferes with experience-dependent structural plasticity in DH whereas α-MSH has a beneficial modulatory role in preventing this effect.


Asunto(s)
Interleucina-1beta/metabolismo , Consolidación de la Memoria/fisiología , Plasticidad Neuronal/fisiología , Animales , Encéfalo/efectos de los fármacos , Condicionamiento Clásico/efectos de los fármacos , Espinas Dendríticas/efectos de los fármacos , Miedo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Interleucina-1beta/farmacología , Masculino , Memoria/efectos de los fármacos , Consolidación de la Memoria/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Ratas , Ratas Wistar , Lóbulo Temporal/efectos de los fármacos , alfa-MSH/metabolismo , alfa-MSH/farmacología
13.
J Neuroendocrinol ; 31(2): e12673, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30712280

RESUMEN

Recent findings relate obesity to inflammation in key hypothalamic areas for body weight control. Hypothalamic inflammation has also been related to oxidative stress. Palmitic acid (PA) is the most abundant free fatty acid found in food, and in vitro studies indicate that it triggers a pro-inflammatory response in the brain. Melanocortins are neuropeptides with proven anti-inflammatory and neuroprotective action mediated by melanocortin receptor 4 (MC4R), but little is known about the effect of melanocortins on oxidative stress. The aim of this study was to investigate whether melanocortins could alleviate oxidative stress induced by a high fat diet (HFD) model. We found that NDP-MSH treatment decreased PA-induced reactive oxygen species production in astrocytes, an effect blocked by the MC4R inhibitor JKC363. NDP-MSH abolished nuclear translocation of Nrf2 induced by PA and blocked the inhibitory effect of PA on superoxide dismutase (SOD) activity and glutathione levels while it also per se increased activity of SOD and γ-glutamate cysteine ligase (γ-GCL) antioxidant enzymes. However, HFD reduced hypothalamic MC4R and brain derived neurotrophic factor mRNA levels, thereby preventing the neuroprotective mechanism induced by melanocortins.


Asunto(s)
Antiinflamatorios/administración & dosificación , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encefalitis/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Obesidad/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ácido Palmítico/administración & dosificación , alfa-MSH/análogos & derivados , Animales , Dieta Alta en Grasa , Encefalitis/complicaciones , Encefalitis/prevención & control , Masculino , Obesidad/complicaciones , Cultivo Primario de Células , Ratas Endogámicas WKY , Ratas Wistar , Transducción de Señal , alfa-MSH/administración & dosificación
14.
Mol Cell Neurosci ; 94: 41-51, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30529228

RESUMEN

α-Melanocyte stimulating hormone (α-MSH) is a melanocortin which exerts potent anti-inflammatory and anti-apoptotic effects. Melanocortin 4 receptors (MC4R) are abundantly expressed in the brain and we previously demonstrated that [Nle(4), D-Phe(7)]melanocyte-stimulating hormone (NDP-MSH), an α-MSH analogue, increased expression of brain derived-neurotrophic factor (BDNF), and peroxisome proliferator-activated receptor-γ (PPAR-γ). We hypothesized that melanocortins could affect striatal cell survival through BDNF and PPAR-γ. First, we determined the expression of these factors in the striatum. Acute intraperitoneal administration (0.5 mg/kg) of α-MSH increased the levels of BDNF mRNA in rat striatum but not in rat cerebral cortex. Also, protein expression of PPAR-γ and MC4R was increased by acute treatment with α-MSH in striatum but not in cortex. No changes were observed by 48 h treatment. Next, we evaluated melanocortins effect on neuron and glial survival. 3-nitropropionic acid (3-NP), which is known to induce striatal degeneration, was used to induce cell death in the rat striatal cell line ST14A expressing mutant human huntingtin (Q120) or in ST14A cells expressing normal human huntingtin (Q15), in primary cultured astrocytes, and in BV2 cells. NDP-MSH protected Q15 cells, astrocytes and BV2 cells from death by 3-NP whereas it did not fully protect Q120 cells. Protection of Q15 cells and astrocytes was blocked by a MC4R specific inhibitor (JKC-363) and a PPAR-γ antagonist (GW9662). The BDNF receptor antagonist (ANA-12) abolished NDP-MSH protective effect in astrocytes but not in Q15 cells. We demonstrate for the first time that melanocortins, acting through PPAR-γ and BDNF, protect neurons and glial cells from 3-NP toxicity.


Asunto(s)
Astrocitos/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Nitrocompuestos/farmacología , Propionatos/farmacología , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormonas Estimuladoras de los Melanocitos/efectos de los fármacos , Ratas Wistar
15.
J Neurochem ; 146(6): 686-702, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29851427

RESUMEN

Astrocytes are glial cells that help maintain brain homeostasis and become reactive in neurodegenerative processes releasing both harmful and beneficial factors. We have demonstrated that brain-derived neurotrophic factor (BDNF) expression is induced by melanocortins in astrocytes but BDNF actions in astrocytes are largely unknown. We hypothesize that BDNF may prevent astrocyte death resulting in neuroprotection. We found that BDNF increased astrocyte viability, preventing apoptosis induced by serum deprivation by decreasing active caspase 3 and p53 expression. The anti-apoptotic action of BDNF was abolished by ANA-12 (a specific TrkB antagonist) and by K252a (a general Trk antagonist). Astrocytes only express the BDNF receptor TrkB-truncated isoform 1, TrkB-T1. BDNF induced ERK, Akt, and Src (a non-receptor tyrosine kinase) activation in astrocytes. Blocking ERK and Akt pathways abolished BDNF protection in serum deprivation-induced cell death. Moreover, BDNF protected astrocytes from death by 3-nitropropionic acid (3-NP), an effect also blocked by ANA-12, K252a, and inhibitors of ERK, calcium, and Src. BDNF reduced reactive oxygen species levels induced in astrocytes by 3-NP and increased xCT expression and glutathione levels. Astrocyte-conditioned medium (ACM) from untreated astrocytes partially protected PC12 neurons, whereas ACM from BDNF-treated astrocytes completely protected PC12 neurons from 3-NP-induced apoptosis. Both ACM from control and BDNF-treated astrocytes markedly reduced reactive oxygen species levels induced by 3-NP in PC12 cells. Our results demonstrate that BDNF protects astrocytes from cell death through TrkB-T1 signaling, exerts an antioxidant action, and induces release of neuroprotective factors from astrocytes. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Asunto(s)
Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Glicoproteínas de Membrana/metabolismo , Fármacos Neuroprotectores/farmacología , Receptor trkB/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/genética , Azepinas/farmacología , Benzamidas/farmacología , Carbazoles/farmacología , Ciclo Celular/efectos de los fármacos , Células Cultivadas , Medio de Cultivo Libre de Suero/toxicidad , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Alcaloides Indólicos/farmacología , Glicoproteínas de Membrana/genética , Células PC12 , Proteínas Tirosina Quinasas/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Receptor trkB/genética
17.
Neuropharmacology ; 128: 314-323, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29042315

RESUMEN

Pro-inflammatory cytokines can affect cognitive processes such as learning and memory. Particularly, interleukin-1ß (IL-1ß) influences hippocampus-dependent memories. We previously reported that administration of IL-1ß in dorsal hippocampus impaired contextual fear memory reconsolidation. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). Our results also demonstrated that IL-1ß produced a significant decrease in glutamate release from dorsal hippocampus synaptosomes after reactivation of the fear memory. Therefore, we investigated whether IL-1ß administration can affect GluA1 AMPA subunit phosphorylation, surface expression, and total expression during reconsolidation of a contextual fear memory. Also, we studied the modulatory effect of α-MSH. We found that IL-1ß reduced phosphorylation of this subunit at Serine 831 and Serine 845 60 min after contextual fear memory reactivation. The intrahippocampal administration of IL-1ß after memory reactivation also induced a decrease in surface expression and total expression of GluA1. α-MSH prevented the effect of IL-1ß on GluA1 phosphorylation in Serine 845, but not in Serine 831. Moreover, treatment with α-MSH also prevented the effect of the cytokine on GluA1 surface and total expression after memory reactivation. Our results demonstrated that IL-1ß regulates phosphorylation of GluA1 and may thus play an important role in modulation of AMPAR function and synaptic plasticity in the brain. These findings further illustrate the importance of IL-1ß in cognition processes dependent on the hippocampus, and also reinforced the fact that α-MSH can reverse IL-1ß effects on memory reconsolidation.


Asunto(s)
Interleucina-1beta/farmacología , Memoria/efectos de los fármacos , Receptores AMPA/metabolismo , alfa-MSH/farmacología , Análisis de Varianza , Animales , Biotinilación , Condicionamiento Clásico/efectos de los fármacos , Miedo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Fosforilación/efectos de los fármacos , Ratas , Ratas Wistar , Serina/metabolismo , Factores de Tiempo
18.
Neuropharmacology ; 123: 274-286, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28495373

RESUMEN

Astrocytes are now fully endorsed as key players in CNS functionality and plasticity. We recently showed that metabotropic glutamate receptor 3 (mGlu3R) activation by LY379268 promotes non-amyloidogenic cleavage of amyloid precursor protein (APP) in cultured astrocytes, leading to increased release of neuroprotective sAPPα. Furthermore, mGlu3R expression is reduced in hippocampal astrocytes from PDAPP-J20 mice, suggesting a role for these receptors in Alzheimer's disease. The present study enquires into the role of astroglial-derived neurotrophins induced by mGlu3R activation in neurotoxicity triggered by amyloid ß (Aß). Conditioned medium from LY379268-treated astrocytes protected hippocampal neurons from Aß-induced cell death. Immunodepletion of sAPPα from the conditioned medium prevented its protective effect. LY379268 induced brain-derived neurotrophic factor (BDNF) expression in astrocytes, and neutralizing BDNF from conditioned medium also prevented its neuroprotective effect on Aß neurotoxicity. LY379268 was also able to decrease Aß-induced neuron death by acting directly on neuronal mGlu3R. On the other hand, LY379268 increased Aß uptake in astrocytes and microglia. Indeed, and more importantly, a reduction in Aß-induced neuron death was observed when co-cultured with LY379268-pretreated astrocytes, suggesting a link between neuroprotection and increased glial phagocytic activity. Altogether, these results indicate a double function for glial mGlu3R activation against Aß neurotoxicity: (i) it increases the release of protective neurotrophins such as sAPPα and BDNF, and (ii) it induces amyloid removal from extracellular space by glia-mediated phagocytosis.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Agonistas de Aminoácidos Excitadores/farmacología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Microglía/efectos de los fármacos , Microglía/patología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neuroprotección/efectos de los fármacos , Neuroprotección/fisiología , Fármacos Neuroprotectores/farmacología , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Ratas Wistar , Receptores de Glutamato Metabotrópico/agonistas
19.
Mediators Inflamm ; 2017: 5048616, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28154473

RESUMEN

Microglial cells are responsible for immune surveillance within the CNS. They respond to noxious stimuli by releasing inflammatory mediators and mounting an effective inflammatory response. This is followed by release of anti-inflammatory mediators and resolution of the inflammatory response. Alterations to this delicate process may lead to tissue damage, neuroinflammation, and neurodegeneration. Chronic pain, such as inflammatory or neuropathic pain, is accompanied by neuroimmune activation, and the role of glial cells in the initiation and maintenance of chronic pain has been the subject of increasing research over the last two decades. Neuropeptides are small amino acidic molecules with the ability to regulate neuronal activity and thereby affect various functions such as thermoregulation, reproductive behavior, food and water intake, and circadian rhythms. Neuropeptides can also affect inflammatory responses and pain sensitivity by modulating the activity of glial cells. The last decade has witnessed growing interest in the study of microglial activation and its modulation by neuropeptides in the hope of developing new therapeutics for treating neurodegenerative diseases and chronic pain. This review summarizes the current literature on the way in which several neuropeptides modulate microglial activity and response to tissue damage and how this modulation may affect pain sensitivity.


Asunto(s)
Inflamación/metabolismo , Microglía/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Neuropéptidos/metabolismo , Dolor/metabolismo , Adrenomedulina/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ghrelina/metabolismo , Humanos , Mediadores de Inflamación , Leptina/metabolismo , Activación de Macrófagos , Neuralgia/metabolismo , Neuroglía/metabolismo , Neuropéptido Y/metabolismo , Proopiomelanocortina/metabolismo , Taquicininas/metabolismo , Péptido Intestinal Vasoactivo/metabolismo
20.
PLoS One ; 11(6): e0158564, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27359332

RESUMEN

α-melanocyte stimulating hormone (α-MSH) is an anti-inflammatory peptide, proved to be beneficial in many neuroinflammatory disorders acting through melanocortin receptor 4 (MC4R). We previously determined that rat microglial cells express MC4R and that NDP-MSH, an analog of α-MSH, induces PPAR-γ expression and IL-10 release in these cells. Given the great importance of modulation of glial activation in neuroinflammatory disorders, we tested the ability of NDP-MSH to shape microglial phenotype and to modulate Toll-like receptor (TLR)-mediated inflammatory responses. Primary rat cultured microglia were stimulated with NDP-MSH followed by the TLR2 agonist Pam3CSK4 or the TLR4 agonist LPS. NDP-MSH alone induced expression of the M2a/M2c marker Ag1 and reduced expression of the M2b marker Il-4rα and of the LPS receptor Tlr4. Nuclear translocation of NF-κB subunits p65 and c-Rel was induced by LPS and these effects were partially prevented by NDP-MSH. NDP-MSH reduced LPS- and Pam3CSK4-induced TNF-α release but did not affect TLR-induced IL-10 release. Also, NDP-MSH inhibited TLR2-induced HMGB1 translocation from nucleus to cytoplasm and TLR2-induced phagocytic activity. Our data show that NDP-MSH inhibits TLR2- and TLR4-mediated proinflammatory mechanisms and promotes microglial M2-like polarization, supporting melanocortins as useful tools for shaping microglial activation towards an alternative immunomodulatory phenotype.


Asunto(s)
Microglía/efectos de los fármacos , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 4/agonistas , alfa-MSH/análogos & derivados , Animales , Células Cultivadas , Interleucina-10/metabolismo , Lipopéptidos/farmacología , Lipopolisacáridos/farmacología , Microglía/metabolismo , Ratas , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , alfa-MSH/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA