Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Molecules ; 26(23)2021 Nov 27.
Article En | MEDLINE | ID: mdl-34885776

Cyclic oxyterpenes are natural products that are mostly used as fragrances, flavours and drugs by the cosmetic, food and pharmaceutical industries. However, only a few cyclic oxyterpenes are accessible via chemical syntheses, which are far from being ecofriendly. We report here the synthesis of six cyclic oxyterpenes derived from ß-pinene while respecting the principles of green and sustainable chemistry. Only natural or biosourced catalysts were used in mild conditions that were optimised for each synthesis. A new generation of ecocatalysts, derived from Mn-rich water lettuce, was prepared via green processes, characterised by MP-AES, XRPD and TEM analyses, and tested in catalysis. The epoxidation of ß-pinene led to the platform molecule, ß-pinene oxide, with a good yield, illustrating the efficacy of the new generation of ecocatalysts. The opening ß-pinene oxide was investigated in green conditions and led to new and regioselective syntheses of myrtenol, 7-hydroxy-α-terpineol and perillyl alcohol. Successive oxidations of perillyl alcohol could be performed using no hazardous oxidant and were controlled using the new generation of ecocatalysts generating perillaldehyde and cuminaldehyde.


Green Chemistry Technology , Terpenes/chemical synthesis , Benzaldehydes/chemical synthesis , Benzaldehydes/chemistry , Bicyclic Monoterpenes/chemical synthesis , Bicyclic Monoterpenes/chemistry , Catalysis , Cymenes/chemical synthesis , Cymenes/chemistry , Elements , Monoterpenes/chemical synthesis , Monoterpenes/chemistry , Principal Component Analysis , Terpenes/chemistry , X-Ray Diffraction
2.
ChemMedChem ; 16(21): 3360-3367, 2021 11 05.
Article En | MEDLINE | ID: mdl-34459148

Inhibition of membrane-bound pyrophosphatase (mPPase) with small molecules offer a new approach in the fight against pathogenic protozoan parasites. mPPases are absent in humans, but essential for many protists as they couple pyrophosphate hydrolysis to the active transport of protons or sodium ions across acidocalcisomal membranes. So far, only few nonphosphorus inhibitors have been reported. Here, we explore the chemical space around previous hits using a combination of screening and synthetic medicinal chemistry, identifying compounds with low micromolar inhibitory activities in the Thermotoga maritima mPPase test system. We furthermore provide early structure-activity relationships around a new scaffold having a pyrazolo[1,5-a]pyrimidine core. The most promising pyrazolo[1,5-a]pyrimidine congener was further investigated and found to inhibit Plasmodium falciparum mPPase in membranes as well as the growth of P. falciparum in an ex vivo survival assay.


Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrophosphatases/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrophosphatases/metabolism , Structure-Activity Relationship
...