Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Am Chem Soc ; 146(15): 10899-10907, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38569596

In the long-standing quest to synthesize fundamental building blocks with key functional group motifs, photochemistry in the recent past has comprehensively established its attractiveness. Amino alcohols are not only functionally diverse but are ubiquitous in the biologically active realm of compounds. We developed bench-stable bifunctional reagents that could then access the sparsely reported γ-amino alcohols directly from feedstock alkenes through energy transfer (EnT) photocatalysis. A designed 1,3-linkage across alkenes is made possible by the intervention of a radical Brook rearrangement that takes place downstream to the EnT-mediated homolysis of our reagent(s). A combination of experimental mechanistic investigations and detailed computational studies (DFT) indicates a radical chain propagated reaction pathway.

2.
J Am Chem Soc ; 145(4): 2364-2374, 2023 Feb 01.
Article En | MEDLINE | ID: mdl-36652725

Sulfur(VI) fluoride exchange (SuFEx) gives rise to a plethora of high-valent sulfur linkages; however, the availability of (aliphatic) sulfonyl fluoride manifolds lag behind, owing to the limited sources of introducing the SO2F moiety via a classical two-electron approach. Recently, radical-based methodologies have emerged as a complementary strategy to increase the diversity of accessible click partners. In this work, synthesis of a bench-stable sulfamoyl fluoride reagent is presented, which may undergo sigma-bond homolysis upon visible-light-induced sensitization to form protected ß-amino sulfonyl fluorides from alkene feedstocks. Notably, this offers an appealing strategy to access various building blocks for peptido sulfonyl fluorides, relevant in a medicinal chemistry context, as well as an intriguing entry to ß-ammonium sulfonates and ß-sultams, from alkenes. Densely functionalized 1,3-sultones were obtained by employing allyl alcohols as substrates. Surprisingly, allyl chloride-derived ß-imino sulfonyl fluoride underwent S-O bond formation and ring closure to yield rigid cyclopropyl ß-imino sulfonate ester under SuFEx conditions. Furthermore, by engaging a thiol-based hydrogen atom donor in the reaction, the reactivity of the same reagent can be tuned toward the direct synthesis of aliphatic sulfonyl fluorides. Mechanistic experiments indicate an energy transfer (EnT)-mediated process. The transient sulfonyl fluoride radical adds to the alkene and product formation occurs upon either radical-radical coupling or hydrogen atom transfer (HAT), respectively.

3.
Curr Opin Chem Biol ; 71: 102209, 2022 12.
Article En | MEDLINE | ID: mdl-36122522

Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.


Biomimetics , Synthetic Biology , Cell Membrane , Lipids , Lipid Bilayers
4.
J Am Chem Soc ; 144(34): 15662-15671, 2022 08 31.
Article En | MEDLINE | ID: mdl-35984989

Cycloaddition reactions─epitomized by the Diels-Alder reaction─offer an arguably unmatched springboard for achieving chemical complexity, often with excellent selectivity, in a modular single step. We report the synthesis of aza-acenaphthenes in a single step by an unprecedented formal peri-(3 + 2) cycloaddition of simple quinolines with alkynes. A commercially available iridium complex exerts a dual role of photosensitizer and photoredox catalyst, fostering a cyclization/rearomatization cascade. The initial energy-transfer phase leads to the acenaphthene skeleton, while the ensuing redox shuttling step leads to aromatization. We applied this technology to 8-substituted quinolines and phenanthrolines, which smoothly reacted with both terminal and internal alkynes with excellent levels of regio- and diastereoselectivity. Density functional theory calculations revealed the intertwined EnT/SET nature of the process and offered guiding design principles for the synthesis of new aza-acenaphthenes.


Acenaphthenes , Quinolines , Alkynes , Cyclization , Cycloaddition Reaction
5.
Chem Sci ; 13(26): 7855-7862, 2022 Jul 06.
Article En | MEDLINE | ID: mdl-35865891

Ketyl-olefin coupling reactions stand as one of the fundamental chemical transformations in synthetic chemistry and have been widely employed in the generation of complex molecular architectures and natural product synthesis. However, catalytic ketyl-olefin coupling, until the recent development of photoredox chemistry and electrosynthesis through single-electron transfer mechanisms, has remained largely undeveloped. Herein, we describe a new approach to achieve catalytic ketyl-olefin coupling reactions by a halogen-atom transfer mechanism, which provides innovative and efficient access to various gem-difluorohomoallylic alcohols under mild conditions with broad substrate scope. Preliminary mechanistic experimental and computational studies demonstrate that this radical-to-polar crossover transformation could be achieved by sequentially orchestrated Lewis acid activation, halogen-atom transfer, radical addition, single-electron reduction and ß-fluoro elimination.

6.
Chem Sci ; 13(19): 5616-5621, 2022 May 18.
Article En | MEDLINE | ID: mdl-35694332

Site-selective C-H alkynylation of arenes to produce aryl alkynes is a highly desirable transformation due to the prevalence of aryl alkynes in various natural products, drug molecules and in materials. To ensure site-selective C-H functionalization, directing group (DG) assisted C-H activation has been evolved as a useful synthetic tool. In contrast to DG-assisted ortho-C-H activation, distal meta-C-H activation is highly challenging and has attracted significant attention in recent years. However, developments are majorly focused on Pd-based catalytic systems. In order to diversify the scope of distal meta-C-H functionalization, herein we disclosed the first Rh(i) catalyzed meta-C-H alkynylation protocol through the inverse Sonogashira coupling reaction. The protocol is compatible with various substrate classes which include phenylacetic acids, hydrocinnamic acids, 2-phenyl benzoic acids, 2-phenyl phenols, benzyl sulfonates and ether-based scaffolds. The post-synthetic modification of meta-alkynylated arenes is also demonstrated through DG-removal as well as functional group interconversion.

...