Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 103(6): 1073-1085.e6, 2019 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-31400829

RESUMEN

Injured axons fail to regenerate in the adult CNS, which contrasts with their vigorous growth during embryonic development. We explored the potential of re-initiating axon extension after injury by reactivating the molecular mechanisms that drive morphogenetic transformation of neurons during development. Genetic loss- and gain-of-function experiments followed by time-lapse microscopy, in vivo imaging, and whole-mount analysis show that axon regeneration is fueled by elevated actin turnover. Actin depolymerizing factor (ADF)/cofilin controls actin turnover to sustain axon regeneration after spinal cord injury through its actin-severing activity. This pinpoints ADF/cofilin as a key regulator of axon growth competence, irrespective of developmental stage. These findings reveal the central role of actin dynamics regulation in this process and elucidate a core mechanism underlying axon growth after CNS trauma. Thereby, neurons maintain the capacity to stimulate developmental programs during adult life, expanding their potential for plasticity. Thus, actin turnover is a key process for future regenerative interventions.


Asunto(s)
Actinas/metabolismo , Axones/metabolismo , Cofilina 1/genética , Cofilina 2/genética , Destrina/genética , Conos de Crecimiento/patología , Regeneración Nerviosa/genética , Traumatismos de la Médula Espinal/genética , Animales , Axones/patología , Cofilina 1/metabolismo , Cofilina 2/metabolismo , Destrina/metabolismo , Conos de Crecimiento/metabolismo , Microscopía Intravital , Ratones , Microscopía Confocal , Neuronas/metabolismo , Neuronas/patología , Ratas , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Imagen de Lapso de Tiempo
2.
Neuron ; 92(2): 419-434, 2016 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-27720483

RESUMEN

Injuries to the adult CNS often result in permanent disabilities because neurons lose the ability to regenerate their axon during development. Here, whole transcriptome sequencing and bioinformatics analysis followed by gain- and loss-of-function experiments identified Cacna2d2, the gene encoding the Alpha2delta2 subunit of voltage-gated calcium channels (VGCCs), as a developmental switch that limits axon growth and regeneration. Cacna2d2 gene deletion or silencing promoted axon growth in vitro. In vivo, Alpha2delta2 pharmacological blockade through Pregabalin (PGB) administration enhanced axon regeneration in adult mice after spinal cord injury (SCI). As PGB is already an established treatment for a wide range of neurological disorders, our findings suggest that targeting Alpha2delta2 may be a novel treatment strategy to promote structural plasticity and regeneration following CNS trauma.


Asunto(s)
Axones/fisiología , Canales de Calcio/genética , Proyección Neuronal/genética , Neuronas/metabolismo , Regeneración/genética , Traumatismos de la Médula Espinal/metabolismo , Animales , Axones/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Sistema Nervioso Central , Femenino , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Perfilación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proyección Neuronal/efectos de los fármacos , Pregabalina/farmacología , ARN Mensajero/metabolismo , Regeneración/efectos de los fármacos , Análisis de Secuencia de ARN
3.
Nat Commun ; 5: 3527, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24686445

RESUMEN

Axonal regenerative failure is a major cause of neurological impairment following central nervous system (CNS) but not peripheral nervous system (PNS) injury. Notably, PNS injury triggers a coordinated regenerative gene expression programme. However, the molecular link between retrograde signalling and the regulation of this gene expression programme that leads to the differential regenerative capacity remains elusive. Here we show through systematic epigenetic studies that the histone acetyltransferase p300/CBP-associated factor (PCAF) promotes acetylation of histone 3 Lys 9 at the promoters of established key regeneration-associated genes following a peripheral but not a central axonal injury. Furthermore, we find that extracellular signal-regulated kinase (ERK)-mediated retrograde signalling is required for PCAF-dependent regenerative gene reprogramming. Finally, PCAF is necessary for conditioning-dependent axonal regeneration and also singularly promotes regeneration after spinal cord injury. Thus, we find a specific epigenetic mechanism that regulates axonal regeneration of CNS axons, suggesting novel targets for clinical application.


Asunto(s)
Axones/enzimología , Sistema Nervioso Central/fisiología , Epigénesis Genética , Regeneración Nerviosa , Traumatismos de la Médula Espinal/enzimología , Factores de Transcripción p300-CBP/metabolismo , Acetilación , Animales , Femenino , Histonas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/fisiopatología , Factores de Transcripción p300-CBP/genética
4.
Exp Neurol ; 242: 11-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22836145

RESUMEN

Upon spinal cord injury, severed axons and the surrounding tissue undergo a series of pathological changes, including retraction of proximal axon ends, degeneration of distal axon ends and formation of a dense fibrotic scar that inhibits regenerative axonal growth. Until recently it was technically challenging to study these dynamic events in the mammalian central nervous system. Here, we describe and discuss the recently established genetic tract tracing approach of in vivo imaging. This technique allows studying acute pathological events following a spinal cord lesion. In addition, the novel development of chronic spinal cord preparations such as the implanted spinal chamber now also enables long-term imaging studies. Hence, in vivo imaging allows the direct observation of acute and chronic dynamic degenerative and regenerative events of individual neurons after traumatic injury in the living animal.


Asunto(s)
Neuronas/fisiología , Imagen Óptica , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal/fisiología , Animales , Animales Modificados Genéticamente , Axones/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Neuronas/patología , Dinámicas no Lineales , Imagen Óptica/instrumentación , Imagen Óptica/métodos , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
5.
Science ; 331(6019): 928-31, 2011 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-21273450

RESUMEN

Hypertrophic scarring and poor intrinsic axon growth capacity constitute major obstacles for spinal cord repair. These processes are tightly regulated by microtubule dynamics. Here, moderate microtubule stabilization decreased scar formation after spinal cord injury in rodents through various cellular mechanisms, including dampening of transforming growth factor-ß signaling. It prevented accumulation of chondroitin sulfate proteoglycans and rendered the lesion site permissive for axon regeneration of growth-competent sensory neurons. Microtubule stabilization also promoted growth of central nervous system axons of the Raphe-spinal tract and led to functional improvement. Thus, microtubule stabilization reduces fibrotic scarring and enhances the capacity of axons to grow.


Asunto(s)
Axones/fisiología , Cicatriz/prevención & control , Microtúbulos/metabolismo , Paclitaxel/administración & dosificación , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Regeneración de la Medula Espinal , Animales , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Cicatriz/patología , Femenino , Ganglios Espinales/citología , Cinesinas/metabolismo , Microtúbulos/efectos de los fármacos , Paclitaxel/farmacología , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/fisiología , Transducción de Señal , Proteína Smad2/metabolismo , Médula Espinal/citología , Médula Espinal/efectos de los fármacos , Traumatismos de la Médula Espinal/patología , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA