Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 73
1.
Phys Rev Lett ; 132(16): 167401, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38701463

Understanding how cooperative behaviors can emerge from competitive interactions is an open problem in biology and social sciences. While interactions are usually modeled as pairwise networks, the units of many real-world systems can also interact in groups of three or more. Here, we introduce a general framework to extend pairwise games to higher-order networks. By studying social dilemmas on hypergraphs with a tunable structure, we find an explosive transition to cooperation triggered by a critical number of higher-order games. The associated bistable regime implies that an initial critical mass of cooperators is also required for the emergence of prosocial behavior. Our results show that higher-order interactions provide a novel explanation for the survival of cooperation.

2.
Phys Rev E ; 108(2-1): 024305, 2023 Aug.
Article En | MEDLINE | ID: mdl-37723687

Compartmental models are the most widely used framework for modeling infectious diseases. These models have been continuously refined to incorporate all the realistic mechanisms that can shape the course of an epidemic outbreak. Building on a compartmental model that accounts for early detection and isolation of infectious individuals through testing, in this article we focus on the viability of detection processes under limited availability of testing resources, and we study how the latter impacts on the detection rate. Our results show that, in addition to the well-known epidemic transition at R_{0}=1, a second transition occurs at R_{0}^{★}>1 pinpointing the collapse of the detection system and, as a consequence, the switch from a regime of mitigation to a regime in which the pathogen spreads freely. We characterize the epidemic phase diagram of the model as a function of the relevant control parameters: the basic reproduction number, the maximum detection capacity of the system, and the fraction of individuals in shelter. Our analysis thus provides a valuable tool for estimating the detection resources and the level of confinement needed to face epidemic outbreaks.


Epidemics , Humans , Disease Outbreaks
3.
Evol Hum Sci ; 5: e9, 2023.
Article En | MEDLINE | ID: mdl-37587930

Here we investigate the effects of extensive sociality and mobility on the oral microbiome of 138 Agta hunter-gatherers from the Philippines. Our comparisons of microbiome composition showed that the Agta are more similar to Central African BaYaka hunter-gatherers than to neighbouring farmers. We also defined the Agta social microbiome as a set of 137 oral bacteria (only 7% of 1980 amplicon sequence variants) significantly influenced by social contact (quantified through wireless sensors of short-range interactions). We show that large interaction networks including strong links between close kin, spouses and even unrelated friends can significantly predict bacterial transmission networks across Agta camps. Finally, we show that more central individuals to social networks are also bacterial supersharers. We conclude that hunter-gatherer social microbiomes are predominantly pathogenic and were shaped by evolutionary tradeoffs between extensive sociality and disease spread.

4.
Evol Hum Sci ; 5: e13, 2023.
Article En | MEDLINE | ID: mdl-37587941

Ecological and genetic factors have influenced the composition of the human microbiome during our evolutionary history. We analysed the oral microbiota of the Agta, a hunter-gatherer population where some members have adopted an agricultural diet. We show that age is the strongest factor modulating the microbiome, probably through immunosenescence since we identified an increase in the number of species classified as pathogens with age. We also characterised biological and cultural processes generating sexual dimorphism in the oral microbiome. A small subset of oral bacteria is influenced by the host genome, linking host collagen genes to bacterial biofilm formation. Our data also suggest that shifting from a fish/meat diet to a rice-rich diet transforms their microbiome, mirroring the Neolithic transition. All of these factors have implications in the epidemiology of oral diseases. Thus, the human oral microbiome is multifactorial and shaped by various ecological and social factors that modify the oral environment.

5.
Article En | MEDLINE | ID: mdl-37224354

Research on graph representation learning has received great attention in recent years. However, most of the studies so far have focused on the embedding of single-layer graphs. The few studies dealing with the problem of representation learning of multilayer structures rely on the strong hypothesis that the inter-layer links are known, and this limits the range of possible applications. Here we propose MultiplexSAGE, a generalization of the GraphSAGE algorithm that allows embedding multiplex networks. We show that MultiplexSAGE is capable to reconstruct both the intra-layer and the inter-layer connectivity, outperforming competing methods. Next, through a comprehensive experimental analysis, we shed light also on the performance of the embedding, both in simple and multiplex networks, showing that both the density of the graph and the randomness of the links strongly influences the quality of the embedding.

6.
Bioinformatics ; 39(4)2023 04 03.
Article En | MEDLINE | ID: mdl-37084249

SUMMARY: The discovery of differential gene-gene correlations across phenotypical groups can help identify the activation/deactivation of critical biological processes underlying specific conditions. The presented R package, provided with a count and design matrix, extract networks of group-specific interactions that can be interactively explored through a shiny user-friendly interface. For each gene-gene link, differential statistical significance is provided through robust linear regression with an interaction term. AVAILABILITY AND IMPLEMENTATION: DEGGs is implemented in R and available on GitHub at https://github.com/elisabettasciacca/DEGGs. The package is also under submission on Bioconductor.


Mobile Applications , Software , High-Throughput Nucleotide Sequencing , Linear Models
7.
Nat Commun ; 13(1): 7479, 2022 12 03.
Article En | MEDLINE | ID: mdl-36463284

Both human-made and natural supply systems, such as power grids and leaf venation networks, are built to operate reliably under changing external conditions. Many of these spatial networks exhibit community structures. Here, we show that a relatively strong connectivity between the parts of a network can be used to define a different class of communities: dual communities. We demonstrate that traditional and dual communities emerge naturally as two different phases of optimized network structures that are shaped by fluctuations and that they both suppress failure spreading, which underlines their importance in understanding the shape of real-world supply networks.


Computer Systems , Plant Leaves , Humans
8.
Nat Commun ; 13(1): 6815, 2022 11 17.
Article En | MEDLINE | ID: mdl-36396640

Bank bailouts are controversial governmental decisions, putting taxpayers' money at risk to avoid a domino effect through the network of claims between financial institutions. Yet very few studies address quantitatively the convenience of government investments in failing banks from the taxpayers' standpoint. We propose a dynamic financial network framework incorporating bailout decisions as a Markov Decision Process and an artificial intelligence technique that learns the optimal bailout actions to minimise the expected taxpayers' losses. Considering the European global systemically important institutions, we find that bailout decisions become optimal only if the taxpayers' stakes exceed some critical level, endogenously determined by all financial network's characteristics. The convenience to intervene increases with the network's distress, taxpayers' stakes, bank bilateral credit exposures and crisis duration. Moreover, the government should optimally keep bailing-out banks that received previous investments, creating moral hazard for rescued banks that could increase their risk-taking, reckoning on government intervention.


Artificial Intelligence , Government , Markov Chains
9.
Arthritis Res Ther ; 24(1): 166, 2022 07 11.
Article En | MEDLINE | ID: mdl-35820911

BACKGROUND: To determine whether gene-gene interaction network analysis of RNA sequencing (RNA-Seq) of synovial biopsies in early rheumatoid arthritis (RA) can inform our understanding of RA pathogenesis and yield improved treatment response prediction models. METHODS: We utilized four well curated pathway repositories obtaining 10,537 experimentally evaluated gene-gene interactions. We extracted specific gene-gene interaction networks in synovial RNA-Seq to characterize histologically defined pathotypes in early RA and leverage these synovial specific gene-gene networks to predict response to methotrexate-based disease-modifying anti-rheumatic drug (DMARD) therapy in the Pathobiology of Early Arthritis Cohort (PEAC). Differential interactions identified within each network were statistically evaluated through robust linear regression models. Ability to predict response to DMARD treatment was evaluated by receiver operating characteristic (ROC) curve analysis. RESULTS: Analysis comparing different histological pathotypes showed a coherent molecular signature matching the histological changes and highlighting novel pathotype-specific gene interactions and mechanisms. Analysis of responders vs non-responders revealed higher expression of apoptosis regulating gene-gene interactions in patients with good response to conventional synthetic DMARD. Detailed analysis of interactions between pairs of network-linked genes identified the SOCS2/STAT2 ratio as predictive of treatment success, improving ROC area under curve (AUC) from 0.62 to 0.78. We identified a key role for angiogenesis, observing significant statistical interactions between NOS3 (eNOS) and both CAMK1 and eNOS activator AKT3 when comparing responders and non-responders. The ratio of CAMKD2/NOS3 enhanced a prediction model of response improving ROC AUC from 0.63 to 0.73. CONCLUSIONS: We demonstrate a novel, powerful method which harnesses gene interaction networks for leveraging biologically relevant gene-gene interactions leading to improved models for predicting treatment response.


Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Gene Regulatory Networks , Humans , Methotrexate/therapeutic use , Sequence Analysis, RNA
10.
Commun Biol ; 5(1): 412, 2022 05 04.
Article En | MEDLINE | ID: mdl-35508588

Humans make eye-contact to extract information about other people's mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization.


Brain , Humans
11.
Phys Rev E ; 105(3-1): 034301, 2022 Mar.
Article En | MEDLINE | ID: mdl-35428139

Many of the biological, social and man-made networks around us are inherently dynamic, with their links switching on and off over time. The evolution of these networks is often observed to be non-Markovian, and the dynamics of their links are often correlated. Hence, to accurately model these networks, predict their evolution, and understand how information and other relevant quantities propagate over them, the inclusion of both memory and dynamical dependencies between links is key. In this article we introduce a general class of models of temporal networks based on discrete autoregressive processes for link dynamics. As a concrete and useful case study, we then concentrate on a specific model within this class, which allows to generate temporal networks with a specified underlying structural backbone, and with precise control over the dynamical dependencies between links and the strength and length of their memories. In this network model the presence of each link is influenced not only by its past activity, but also by the past activities of other links, as specified by a coupling matrix, which directly controls the causal relations, and hence the correlations, among links. We propose a maximum likelihood method for estimating the model's parameters from data, showing how the model allows a more realistic description of real-world temporal networks and also to predict their evolution. Due to the flexibility of maximum likelihood inference, we illustrate how to deal with heterogeneity and time-varying patterns, possibly including also nonstationary network dynamics. We then use our network model to investigate the role that, both the features of memory and the type of correlations in the dynamics of links have on the properties of processes occurring over a temporal network. Namely, we study the speed of a spreading process, as measured by the time it takes for diffusion to reach equilibrium. Through both numerical simulations and analytical results, we are able to separate the roles of autocorrelations and neighborhood correlations in link dynamics, showing that not only is the speed of diffusion nonmonotonically dependent on the memory length, but also that correlations among neighboring links help to speed up the spreading process, while autocorrelations slow it back down. Our results have implications in the study of opinion formation, the modeling of social networks, and the spreading of epidemics through mobile populations.

12.
Sci Adv ; 8(3): eabg5234, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35044820

Compartmental models are widely adopted to describe and predict the spreading of infectious diseases. The unknown parameters of these models need to be estimated from the data. Furthermore, when some of the model variables are not empirically accessible, as in the case of asymptomatic carriers of coronavirus disease 2019 (COVID-19), they have to be obtained as an outcome of the model. Here, we introduce a framework to quantify how the uncertainty in the data affects the determination of the parameters and the evolution of the unmeasured variables of a given model. We illustrate how the method is able to characterize different regimes of identifiability, even in models with few compartments. Last, we discuss how the lack of identifiability in a realistic model for COVID-19 may prevent reliable predictions of the epidemic dynamics.

13.
Nat Commun ; 13(1): 499, 2022 01 25.
Article En | MEDLINE | ID: mdl-35078990

How to best define, detect and characterize network memory, i.e. the dependence of a network's structure on its past, is currently a matter of debate. Here we show that the memory of a temporal network is inherently multidimensional, and we introduce a mathematical framework for defining and efficiently estimating the microscopic shape of memory, which characterises how the activity of each link intertwines with the activities of all other links. We validate our methodology on a range of synthetic models, and we then study the memory shape of real-world temporal networks spanning social, technological and biological systems, finding that these networks display heterogeneous memory shapes. In particular, online and offline social networks are markedly different, with the latter showing richer memory and memory scales. Our theory also elucidates the phenomenon of emergent virtual loops and provides a novel methodology for exploring the dynamically rich structure of complex systems.

14.
Sci Rep ; 11(1): 23065, 2021 11 29.
Article En | MEDLINE | ID: mdl-34845286

Spatial systems that experience congestion can be modeled as weighted networks whose weights dynamically change over time with the redistribution of flows. This is particularly true for urban transportation networks. The aim of this work is to find appropriate network measures that are able to detect critical zones for traffic congestion and bottlenecks in a transportation system. We propose for both single and multi-layered networks a path-based measure, called dynamical efficiency, which computes the travel time differences under congested and free-flow conditions. The dynamical efficiency quantifies the reachability of a location embedded in the whole urban traffic condition, in lieu of a myopic description based on the average speed of single road segments. In this way, we are able to detect the formation of congestion seeds and visualize their evolution in time as well-defined clusters. Moreover, the extension to multilayer networks allows us to introduce a novel measure of centrality, which estimates the expected usage of inter-modal junctions between two different transportation means. Finally, we define the so-called dilemma factor in terms of number of alternatives that an interconnected transportation system offers to the travelers in exchange for a small increase in travel time. We find macroscopic relations between the percentage of extra-time, number of alternatives and level of congestion, useful to quantify the richness of trip choices that a city offers. As an illustrative example, we show how our methods work to study the real network of a megacity with probe traffic data.

15.
Phys Rev E ; 104(1-1): 014112, 2021 Jul.
Article En | MEDLINE | ID: mdl-34412320

We introduce a general method for the study of memory in symbolic sequences based on higher-order Markov analysis. The Markov process that best represents a sequence is expressed as a mixture of matrices of minimal orders, enabling the definition of the so-called memory profile, which unambiguously reflects the true order of correlations. The method is validated by recovering the memory profiles of tunable synthetic sequences. Finally, we scan real data and showcase with practical examples how our protocol can be used to extract relevant stochastic properties of symbolic sequences.

16.
Nat Commun ; 12(1): 3143, 2021 May 25.
Article En | MEDLINE | ID: mdl-34035263

In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demostrate that not only decreasing but also increasing the connectivity of the network can be an effective method to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.

17.
Nat Hum Behav ; 5(5): 586-595, 2021 05.
Article En | MEDLINE | ID: mdl-33398148

We live and cooperate in networks. However, links in networks only allow for pairwise interactions, thus making the framework suitable for dyadic games, but not for games that are played in larger groups. Here, we study the evolutionary dynamics of a public goods game in social systems with higher-order interactions. First, we show that the game on uniform hypergraphs corresponds to the replicator dynamics in the well-mixed limit, providing a formal theoretical foundation to study cooperation in networked groups. Second, we unveil how the presence of hubs and the coexistence of interactions in groups of different sizes affects the evolution of cooperation. Finally, we apply the proposed framework to extract the actual dependence of the synergy factor on the size of a group from real-world collaboration data in science and technology. Our work provides a way to implement informed actions to boost cooperation in social groups.


Cooperative Behavior , Models, Theoretical , Social Networking , Humans
18.
Phys Rev Lett ; 127(26): 268301, 2021 Dec 24.
Article En | MEDLINE | ID: mdl-35029481

We introduce an evolutionary game on hypergraphs in which decisions between a risky alternative and a safe one are taken in social groups of different sizes. The model naturally reproduces choice shifts, namely the differences between the preference of individual decision makers and the consensual choice of a group, that have been empirically observed in choice dilemmas. In particular, a deviation from the Nash equilibrium toward the risky strategy occurs when the dynamics takes place on heterogeneous hypergraphs. These results can explain the emergence of irrational herding and radical behaviors in social groups.


Choice Behavior , Game Theory , Group Processes , Humans
19.
Sci Rep ; 10(1): 12097, 2020 Jul 21.
Article En | MEDLINE | ID: mdl-32694516

The exchange of knowledge across different areas and disciplines plays a key role in the process of knowledge creation, and can stimulate innovation and the emergence of new fields. We develop here a quantitative framework to extract significant dependencies among scientific disciplines and turn them into a time-varying network whose nodes are the different fields, while the weighted links represent the flow of knowledge from one field to another at a given period of time. Drawing on a comprehensive data set on scientific production in modern physics and on the patterns of citations between articles published in the various fields in the last 30 years, we are then able to map, over time, how the ideas developed in a given field in a certain time period have influenced later discoveries in the same field or in other fields. The analysis of knowledge flows internal to each field displays a remarkable variety of temporal behaviours, with some fields of physics showing to be more self-referential than others. The temporal networks of knowledge exchanges across fields reveal cases of one field continuously absorbing knowledge from another field in the entire observed period, pairs of fields mutually influencing each other, but also cases of evolution from absorbing to mutual or even to back-nurture behaviors.

20.
Sci Adv ; 6(9): eaax5913, 2020 02.
Article En | MEDLINE | ID: mdl-32158935

Although multilevel sociality is a universal feature of human social organization, its functional relevance remains unclear. Here, we investigated the effect of multilevel sociality on cumulative cultural evolution by using wireless sensing technology to map inter- and intraband social networks among Agta hunter-gatherers. By simulating the accumulation of cultural innovations over the real Agta multicamp networks, we demonstrate that multilevel sociality accelerates cultural differentiation and cumulative cultural evolution. Our results suggest that hunter-gatherer social structures [based on (i) clustering of families within camps and camps within regions, (ii) cultural transmission within kinship networks, and (iii) high intercamp mobility] may have allowed past and present hunter-gatherers to maintain cumulative cultural adaptation despite low population density, a feature that may have been critical in facilitating the global expansion of Homo sapiens.


Cultural Evolution , Social Behavior , Humans
...