Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Int J Cancer ; 154(9): 1652-1668, 2024 May 01.
Article En | MEDLINE | ID: mdl-38180088

Patients with myelodysplastic neoplasms (MDS) are classified according to the risk of acute myeloid leukemia transformation. Some lower-risk MDS patients (LR-MDS) progress rapidly despite expected good prognosis. Using diagnostic samples, we aimed to uncover the mechanisms of this accelerated progression at the transcriptome level. RNAseq was performed on CD34+ ribodepleted RNA samples from 53 LR-MDS patients without accelerated progression (stMDS) and 8 who progressed within 20 months (prMDS); 845 genes were differentially expressed (ІlogFCІ > 1, FDR < 0.01) between these groups. stMDS CD34+ cells exhibited transcriptional signatures of actively cycling, megakaryocyte/erythrocyte lineage-primed progenitors, with upregulation of cell cycle checkpoints and stress pathways, which presumably form a tumor-suppressing barrier. Conversely, cell cycle, DNA damage response (DDR) and energy metabolism-related pathways were downregulated in prMDS samples, whereas cell adhesion processes were upregulated. Also, prMDS samples showed high levels of aberrant splicing and global lncRNA expression that may contribute to the attenuation of DDR pathways. We observed overexpression of multiple oncogenes and diminished differentiation in prMDS; the expression of ZEB1 and NEK3, genes not previously associated with MDS prognosis, might serve as potential biomarkers for LR-MDS progression. Our 19-gene DDR signature showed a significant predictive power for LR-MDS progression. In validation samples (stMDS = 3, prMDS = 4), the key markers and signatures retained their significance. Collectively, accelerated progression of LR-MDS appears to be associated with transcriptome patterns of a quiescent-like cell state, reduced lineage differentiation and suppressed DDR, inherent to CD34+ cells. The attenuation of DDR-related gene-expression signature may refine risk assessment in LR-MDS patients.


Myelodysplastic Syndromes , Neoplasms , Humans , Transcriptome , Cell Adhesion , Myelodysplastic Syndromes/genetics , Cell Cycle , DNA Repair , NIMA-Related Kinases/genetics , NIMA-Related Kinases/metabolism
2.
Blood Adv ; 6(17): 5171-5183, 2022 09 13.
Article En | MEDLINE | ID: mdl-35802458

Myeloproliferative neoplasms (MPNs) are uncommon in children/young adults. Here, we present data on unselected patients diagnosed before 25 years of age included from 38 centers in 15 countries. Sequential patients were included. We identified 444 patients, with median follow-up 9.7 years (0-47.8). Forty-nine (11.1%) had a history of thrombosis at diagnosis, 49 new thrombotic events were recorded (1.16% patient per year [pt/y]), perihepatic vein thromboses were most frequent (47.6% venous events), and logistic regression identified JAK2V617F mutation (P = .016) and hyperviscosity symptoms (visual disturbances, dizziness, vertigo, headache) as risk factors (P = .040). New hemorrhagic events occurred in 44 patients (9.9%, 1.04% pt/y). Disease transformation occurred in 48 patients (10.9%, 1.13% pt/y), usually to myelofibrosis (7.5%) with splenomegaly as a novel risk factor for transformation in essential thrombocythemia (ET) (P= .000) in logistical regression. Eight deaths (1.8%) were recorded, 3 after allogeneic stem cell transplantation. Concerning conventional risk scores: International Prognostic Score for Essential Thrombocythemia-Thrombosis and new International Prognostic Score for Essential Thrombocythemia-Thrombosis differentiated ET patients in terms of thrombotic risk. Both scores identified high-risk patients with the same median thrombosis-free survival of 28.5 years. No contemporary scores were able to predict survival for young ET or polycythemia vera patients. Our data represents the largest real-world study of MPN patients age < 25 years at diagnosis. Rates of thrombotic events and transformation were higher than expected compared with the previous literature. Our study provides new and reliable information as a basis for prospective studies, trials, and development of harmonized international guidelines for the specific management of young patients with MPN.


Myeloproliferative Disorders , Polycythemia Vera , Primary Myelofibrosis , Thrombocythemia, Essential , Thrombosis , Adult , Child , Humans , Myeloproliferative Disorders/complications , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/epidemiology , Polycythemia Vera/complications , Primary Myelofibrosis/genetics , Prospective Studies , Thrombosis/etiology , Young Adult
3.
Leukemia ; 36(7): 1898-1906, 2022 07.
Article En | MEDLINE | ID: mdl-35505182

Patients with lower-risk myelodysplastic syndromes (LR-MDS) have a generally favorable prognosis; however, a small proportion of cases progress rapidly. This study aimed to define molecular biomarkers predictive of LR-MDS progression and to uncover cellular pathways contributing to malignant transformation. The mutational landscape was analyzed in 214 LR-MDS patients, and at least one mutation was detected in 137 patients (64%). Mutated RUNX1 was identified as the main molecular predictor of rapid progression by statistics and machine learning. To study the effect of mutated RUNX1 on pathway regulation, the expression profiles of CD34 + cells from LR-MDS patients with RUNX1 mutations were compared to those from patients without RUNX1 mutations. The data suggest that RUNX1-unmutated LR-MDS cells are protected by DNA damage response (DDR) mechanisms and cellular senescence as an antitumor cellular barrier, while RUNX1 mutations may be one of the triggers of malignant transformation. Dysregulated DDR and cellular senescence were also observed at the functional level by detecting γH2AX expression and ß-galactosidase activity. Notably, the expression profiles of RUNX1-mutated LR-MDS resembled those of higher-risk MDS at diagnosis. This study demonstrates that incorporating molecular data improves LR-MDS risk stratification and that mutated RUNX1 is associated with a suppressed defense against LR-MDS progression.


Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/pathology , Prognosis
4.
Oncotarget ; 7(24): 36266-36279, 2016 Jun 14.
Article En | MEDLINE | ID: mdl-27167113

TP53 mutations are frequently detected in patients with higher-risk myelodysplastic syndromes (MDS); however, the clinical impact of these mutations on the disease course of patients with lower-risk MDS is unclear. In this study of 154 lower-risk MDS patients, TP53 mutations were identified in 13% of patients, with prevalence in patients with del(5q) (23.6%) compared to non-del(5q) (3.8%). Two-thirds of the mutations were detected at the time of diagnosis, and one-third were detected during the course of the disease. Multivariate analysis demonstrated that a TP53 mutation was the strongest independent prognostic factor for overall survival (OS) (HR: 4.39) and progression-free survival (PFS) (HR: 3.74). Evaluation of OS determined a TP53 variant allele frequency (VAF) threshold of 6% as an optimal cut-off for patient stratification. The median OS was 43.5 months in patients with mutations detected at the time of diagnosis and a mutational burden of > 6% VAF compared to 138 months (HR 12.2; p = 0.003) in patients without mutations; similarly, the median PFS was 20.2 months versus 116.6 months (HR 79.5; p < 0.0001). In contrast, patients with a mutational burden of < 6% VAF were stable for long periods without progression and had no significant impact on PFS or OS. Additionally, we found a high correlation in the mutational data from cells of the peripheral blood and those of the bone marrow, indicating that peripheral blood is a reliable source for mutation monitoring. Our results indicate that the clinical impact of TP53 mutations in lower-risk MDS patients depends on the level of mutational burden.


Chromosome Deletion , Chromosomes, Human, Pair 5/genetics , Mutation , Myelodysplastic Syndromes/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Alleles , Female , Gene Frequency , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Multivariate Analysis , Prognosis , Risk Factors , Young Adult
...