Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Curr Protoc ; 3(6): e804, 2023 Jun.
Article En | MEDLINE | ID: mdl-37347557

The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, https://rgd.mcw.edu) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes, cellular components, and chemical interactions for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat and other species. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Navigating the Rat Genome Database (RGD) home page Basic Protocol 2: Using the RGD search functions Basic Protocol 3: Searching for quantitative trait loci Basic Protocol 4: Using the RGD genome browser (JBrowse) to find phenotypic annotations Basic Protocol 5: Using OntoMate to find gene-disease data Basic Protocol 6: Using MOET to find gene-ontology enrichment Basic Protocol 7: Using OLGA to generate gene lists for analysis Basic Protocol 8: Using the GA tool to analyze ontology annotations for genes Basic Protocol 9: Using the RGD InterViewer tool to find protein interaction data Basic Protocol 10: Using the RGD Variant Visualizer tool to find genetic variant data Basic Protocol 11: Using the RGD Disease Portals to find disease, phenotype, and other information Basic Protocol 12: Using the RGD Phenotypes & Models Portal to find qualitative and quantitative phenotype data and other rat strain-related information Basic Protocol 13: Using the RGD Pathway Portal to find disease and phenotype data via molecular pathways.


Genomics , Quantitative Trait Loci , Humans , Animals , Rats , Databases, Protein , Phenotype , Oligopeptides
2.
Genetics ; 224(4)2023 08 09.
Article En | MEDLINE | ID: mdl-37119810

Rare diseases individually affect relatively few people, but as a group they impact considerable numbers of people. The Rat Genome Database (https://rgd.mcw.edu) is a knowledgebase that offers resources for rare disease research. This includes disease definitions, genes, quantitative trail loci (QTLs), genetic variants, annotations to published literature, links to external resources, and more. One important resource is identifying relevant cell lines and rat strains that serve as models for disease research. Diseases, genes, and strains have report pages with consolidated data, and links to analysis tools. Utilizing these globally accessible resources for rare disease research, potentiating discovery of mechanisms and new treatments, can point researchers toward solutions to alleviate the suffering of those afflicted with these diseases.


Genome , Rare Diseases , Rats , Animals , Genome/genetics , Rare Diseases/genetics , Rare Diseases/therapy , Databases, Genetic
3.
Genetics ; 224(1)2023 05 04.
Article En | MEDLINE | ID: mdl-36930729

The Rat Genome Database (RGD, https://rgd.mcw.edu) has evolved from simply a resource for rat genetic markers, maps, and genes, by adding multiple genomic data types and extensive disease and phenotype annotations and developing tools to effectively mine, analyze, and visualize the available data, to empower investigators in their hypothesis-driven research. Leveraging its robust and flexible infrastructure, RGD has added data for human and eight other model organisms (mouse, 13-lined ground squirrel, chinchilla, naked mole-rat, dog, pig, African green monkey/vervet, and bonobo) besides rat to enhance its translational aspect. This article presents an overview of the database with the most recent additions to RGD's genome, variant, and quantitative phenotype data. We also briefly introduce Virtual Comparative Map (VCMap), an updated tool that explores synteny between species as an improvement to RGD's suite of tools, followed by a discussion regarding the refinements to the existing PhenoMiner tool that assists researchers in finding and comparing quantitative data across rat strains. Collectively, RGD focuses on providing a continuously improving, consistent, and high-quality data resource for researchers while advancing data reproducibility and fulfilling Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.


Databases, Genetic , Genome , Animals , Mice , Humans , Dogs , Swine , Chlorocebus aethiops , Reproducibility of Results , Genomics , Oligopeptides
4.
Genes (Basel) ; 13(12)2022 12 07.
Article En | MEDLINE | ID: mdl-36553571

The COVID-19 pandemic stemmed a parallel upsurge in the scientific literature about SARS-CoV-2 infection and its health burden. The Rat Genome Database (RGD) created a COVID-19 Disease Portal to leverage information from the scientific literature. In the COVID-19 Portal, gene-disease associations are established by manual curation of PubMed literature. The portal contains data for nine ontologies related to COVID-19, an embedded enrichment analysis tool, as well as links to a toolkit. Using these information and tools, we performed analyses on the curated COVID-19 disease genes. As expected, Disease Ontology enrichment analysis showed that the COVID-19 gene set is highly enriched with coronavirus infectious disease and related diseases. However, other less related diseases were also highly enriched, such as liver and rheumatic diseases. Using the comparison heatmap tool, we found nearly 60 percent of the COVID-19 genes were associated with nervous system disease and 40 percent were associated with gastrointestinal disease. Our analysis confirms the role of the immune system in COVID-19 pathogenesis as shown by substantial enrichment of immune system related Gene Ontology terms. The information in RGD's COVID-19 disease portal can generate new hypotheses to potentiate novel therapies and prevention of acute and long-term complications of COVID-19.


COVID-19 , Nervous System Diseases , Rats , Animals , Humans , COVID-19/genetics , Pandemics , SARS-CoV-2/genetics , Oligopeptides
5.
Genetics ; 220(4)2022 04 04.
Article En | MEDLINE | ID: mdl-35380657

Biological interpretation of a large amount of gene or protein data is complex. Ontology analysis tools are imperative in finding functional similarities through overrepresentation or enrichment of terms associated with the input gene or protein lists. However, most tools are limited by their ability to do ontology-specific and species-limited analyses. Furthermore, some enrichment tools are not updated frequently with recent information from databases, thus giving users inaccurate, outdated or uninformative data. Here, we present MOET or the Multi-Ontology Enrichment Tool (v.1 released in April 2019 and v.2 released in May 2021), an ontology analysis tool leveraging data that the Rat Genome Database (RGD) integrated from in-house expert curation and external databases including the National Center for Biotechnology Information (NCBI), Mouse Genome Informatics (MGI), The Kyoto Encyclopedia of Genes and Genomes (KEGG), The Gene Ontology Resource, UniProt-GOA, and others. Given a gene or protein list, MOET analysis identifies significantly overrepresented ontology terms using a hypergeometric test and provides nominal and Bonferroni corrected P-values and odds ratios for the overrepresented terms. The results are shown as a downloadable list of terms with and without Bonferroni correction, and a graph of the P-values and number of annotated genes for each term in the list. MOET can be accessed freely from https://rgd.mcw.edu/rgdweb/enrichment/start.html.


Databases, Genetic , Genome , Animals , Gene Ontology , Genome/genetics , Internet , Mice , Rats , Software
6.
Nucleic Acids Res ; 48(D1): D731-D742, 2020 01 08.
Article En | MEDLINE | ID: mdl-31713623

Formed in late 1999, the Rat Genome Database (RGD, https://rgd.mcw.edu) will be 20 in 2020, the Year of the Rat. Because the laboratory rat, Rattus norvegicus, has been used as a model for complex human diseases such as cardiovascular disease, diabetes, cancer, neurological disorders and arthritis, among others, for >150 years, RGD has always been disease-focused and committed to providing data and tools for researchers doing comparative genomics and translational studies. At its inception, before the sequencing of the rat genome, RGD started with only a few data types localized on genetic and radiation hybrid (RH) maps and offered only a few tools for querying and consolidating that data. Since that time, RGD has expanded to include a wealth of structured and standardized genetic, genomic, phenotypic, and disease-related data for eight species, and a suite of innovative tools for querying, analyzing and visualizing this data. This article provides an overview of recent substantial additions and improvements to RGD's data and tools that can assist researchers in finding and utilizing the data they need, whether their goal is to develop new precision models of disease or to more fully explore emerging details within a system or across multiple systems.


Chromosome Mapping , Computational Biology/methods , Databases, Genetic , Genome , Rats/genetics , Algorithms , Animals , Chinchilla/genetics , Disease Models, Animal , Dogs/genetics , Genetic Markers , Genetic Variation , Humans , Internet , Mice/genetics , Pan troglodytes/genetics , Phenotype , Protein Interaction Mapping , Retina/metabolism , Sciuridae/genetics , Software , Species Specificity , Swine/genetics , User-Computer Interface
7.
Methods Mol Biol ; 2018: 71-96, 2019.
Article En | MEDLINE | ID: mdl-31228152

Resources for rat researchers are extensive, including strain repositories and databases all around the world. The Rat Genome Database (RGD) serves as the primary rat data repository, providing both manual and computationally collected data from other databases.


Databases, Factual , Genome , Models, Animal , Animals , Biomedical Research , Molecular Sequence Annotation , Phenotype , Quantitative Trait Loci , Rats
8.
Database (Oxford) ; 20192019 01 01.
Article En | MEDLINE | ID: mdl-30753478

Rats have been used as research models in biomedical research for over 150 years. These disease models arise from naturally occurring mutations, selective breeding and, more recently, genome manipulation. Through the innovation of genome-editing technologies, genome-modified rats provide precision models of disease by disrupting or complementing targeted genes. To facilitate the use of these data produced from rat disease models, the Rat Genome Database (RGD) organizes rat strains and annotates these strains with disease and qualitative phenotype terms as well as quantitative phenotype measurements. From the curated quantitative data, the expected phenotype profile ranges were established through a meta-analysis pipeline using inbred rat strains in control conditions. The disease and qualitative phenotype annotations are propagated to their associated genes and alleles if applicable. Currently, RGD has curated nearly 1300 rat strains with disease/phenotype annotations and about 11% of them have known allele associations. All of the annotations (disease and phenotype) are integrated and displayed on the strain, gene and allele report pages. Finding disease and phenotype models at RGD can be done by searching for terms in the ontology browser, browsing the disease or phenotype ontology branches or entering keywords in the general search. Use cases are provided to show different targeted searches of rat strains at RGD.


Data Curation , Data Mining , Databases, Genetic , Disease/genetics , Genome , Animals , Cytochrome P-450 Enzyme System/genetics , Disease Models, Animal , Molecular Sequence Annotation , Phenotype , Rats
9.
Nucleic Acids Res ; 47(D1): D1018-D1027, 2019 01 08.
Article En | MEDLINE | ID: mdl-30476213

The Human Phenotype Ontology (HPO)-a standardized vocabulary of phenotypic abnormalities associated with 7000+ diseases-is used by thousands of researchers, clinicians, informaticians and electronic health record systems around the world. Its detailed descriptions of clinical abnormalities and computable disease definitions have made HPO the de facto standard for deep phenotyping in the field of rare disease. The HPO's interoperability with other ontologies has enabled it to be used to improve diagnostic accuracy by incorporating model organism data. It also plays a key role in the popular Exomiser tool, which identifies potential disease-causing variants from whole-exome or whole-genome sequencing data. Since the HPO was first introduced in 2008, its users have become both more numerous and more diverse. To meet these emerging needs, the project has added new content, language translations, mappings and computational tooling, as well as integrations with external community data. The HPO continues to collaborate with clinical adopters to improve specific areas of the ontology and extend standardized disease descriptions. The newly redesigned HPO website (www.human-phenotype-ontology.org) simplifies browsing terms and exploring clinical features, diseases, and human genes.


Biological Ontologies , Computational Biology/methods , Congenital Abnormalities/genetics , Genetic Predisposition to Disease/genetics , Knowledge Bases , Rare Diseases/genetics , Congenital Abnormalities/diagnosis , Databases, Genetic , Genetic Variation , Humans , Internet , Phenotype , Rare Diseases/diagnosis , Whole Genome Sequencing/methods
10.
Lab Anim (NY) ; 47(10): 277-289, 2018 10.
Article En | MEDLINE | ID: mdl-30224793

Model organism databases (MODs) have been collecting and integrating biomedical research data for 30 years and were designed to meet specific needs of each model organism research community. The contributions of model organism research to understanding biological systems would be hard to overstate. Modern molecular biology methods and cost reductions in nucleotide sequencing have opened avenues for direct application of model organism research to elucidating mechanisms of human diseases. Thus, the mandate for model organism research and databases has now grown to include facilitating use of these data in translational applications. Challenges in meeting this opportunity include the distribution of research data across many databases and websites, a lack of data format standards for some data types, and sustainability of scale and cost for genomic database resources like MODs. The issues of widely distributed data and application of data standards are some of the challenges addressed by FAIR (Findable, Accessible, Interoperable, and Re-usable) data principles. The Alliance of Genome Resources is now moving to address these challenges by bringing together expertly curated research data from fly, mouse, rat, worm, yeast, zebrafish, and the Gene Ontology consortium. Centralized multi-species data access, integration, and format standardization will lower the data utilization barrier in comparative genomics and translational applications and will provide a framework in which sustainable scale and cost can be addressed. This article presents a brief historical perspective on how the Alliance model organisms are complementary and how they have already contributed to understanding the etiology of human diseases. In addition, we discuss four challenges for using data from MODs in translational applications and how the Alliance is working to address them, in part by applying FAIR data principles. Ultimately, combined data from these animal models are more powerful than the sum of the parts.


Animals, Laboratory , Databases as Topic , Translational Research, Biomedical/methods , Animals , Models, Animal
11.
Methods Mol Biol ; 1757: 163-209, 2018.
Article En | MEDLINE | ID: mdl-29761460

The laboratory rat, Rattus norvegicus, is an important model of human health and disease, and experimental findings in the rat have relevance to human physiology and disease. The Rat Genome Database (RGD, http://rgd.mcw.edu ) is a model organism database that provides access to a wide variety of curated rat data including disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components for genes, quantitative trait loci, and strains. We present an overview of the database followed by specific examples that can be used to gain experience in employing RGD to explore the wealth of functional data available for the rat.


Databases, Genetic , Genome , Genomics , Animals , Computational Biology/methods , Data Analysis , Data Mining , Gene Ontology , Genomics/methods , Phenotype , Quantitative Trait Loci , Rats , Search Engine , Software , User-Computer Interface , Web Browser
12.
Dis Model Mech ; 11(3)2018 03 12.
Article En | MEDLINE | ID: mdl-29590633

Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD's and RGD's disease term annotations identified new terms that enhance DO's representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO's domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO's usability across human data, MGD, RGD and the rest of the model organism database community.


Disease/genetics , Gene Ontology , Molecular Sequence Annotation , Animals , Databases, Genetic , Mice , Rats , Species Specificity
13.
Circ Genom Precis Med ; 11(2): e001813, 2018 02.
Article En | MEDLINE | ID: mdl-29440116

BACKGROUND: A systems biology approach to cardiac physiology requires a comprehensive representation of how coordinated processes operate in the heart, as well as the ability to interpret relevant transcriptomic and proteomic experiments. The Gene Ontology (GO) Consortium provides structured, controlled vocabularies of biological terms that can be used to summarize and analyze functional knowledge for gene products. METHODS AND RESULTS: In this study, we created a computational resource to facilitate genetic studies of cardiac physiology by integrating literature curation with attention to an improved and expanded ontological representation of heart processes in the Gene Ontology. As a result, the Gene Ontology now contains terms that comprehensively describe the roles of proteins in cardiac muscle cell action potential, electrical coupling, and the transmission of the electrical impulse from the sinoatrial node to the ventricles. Evaluating the effectiveness of this approach to inform data analysis demonstrated that Gene Ontology annotations, analyzed within an expanded ontological context of heart processes, can help to identify candidate genes associated with arrhythmic disease risk loci. CONCLUSIONS: We determined that a combination of curation and ontology development for heart-specific genes and processes supports the identification and downstream analysis of genes responsible for the spread of the cardiac action potential through the heart. Annotating these genes and processes in a structured format facilitates data analysis and supports effective retrieval of gene-centric information about cardiac defects.


Gene Ontology , Heart Diseases , Proteomics , Computational Biology , Databases, Genetic , Heart , Heart Diseases/genetics , Humans , Molecular Sequence Annotation , Phenotype
14.
Dis Model Mech ; 9(10): 1089-1095, 2016 10 01.
Article En | MEDLINE | ID: mdl-27736745

Rattus norvegicus, the laboratory rat, has been a crucial model for studies of the environmental and genetic factors associated with human diseases for over 150 years. It is the primary model organism for toxicology and pharmacology studies, and has features that make it the model of choice in many complex-disease studies. Since 1999, the Rat Genome Database (RGD; http://rgd.mcw.edu) has been the premier resource for genomic, genetic, phenotype and strain data for the laboratory rat. The primary role of RGD is to curate rat data and validate orthologous relationships with human and mouse genes, and make these data available for incorporation into other major databases such as NCBI, Ensembl and UniProt. RGD also provides official nomenclature for rat genes, quantitative trait loci, strains and genetic markers, as well as unique identifiers. The RGD team adds enormous value to these basic data elements through functional and disease annotations, the analysis and visual presentation of pathways, and the integration of phenotype measurement data for strains used as disease models. Because much of the rat research community focuses on understanding human diseases, RGD provides a number of datasets and software tools that allow users to easily explore and make disease-related connections among these datasets. RGD also provides comprehensive human and mouse data for comparative purposes, illustrating the value of the rat in translational research. This article introduces RGD and its suite of tools and datasets to researchers - within and beyond the rat community - who are particularly interested in leveraging rat-based insights to understand human diseases.


Databases, Genetic , Disease/genetics , Genome , Animals , Data Mining , Gene Ontology , Humans , Molecular Sequence Annotation , Rats
15.
Article En | MEDLINE | ID: mdl-27589961

Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org.


Data Curation/methods , Data Mining/methods , Electronic Data Processing/methods
16.
Physiol Genomics ; 48(8): 589-600, 2016 08 01.
Article En | MEDLINE | ID: mdl-27287925

Cardiovascular diseases are complex diseases caused by a combination of genetic and environmental factors. To facilitate progress in complex disease research, the Rat Genome Database (RGD) provides the community with a disease portal where genome objects and biological data related to cardiovascular diseases are systematically organized. The purpose of this study is to present biocuration at RGD, including disease, genetic, and pathway data. The RGD curation team uses controlled vocabularies/ontologies to organize data curated from the published literature or imported from disease and pathway databases. These organized annotations are associated with genes, strains, and quantitative trait loci (QTLs), thus linking functional annotations to genome objects. Screen shots from the web pages are used to demonstrate the organization of annotations at RGD. The human cardiovascular disease genes identified by annotations were grouped according to data sources and their annotation profiles were compared by in-house tools and other enrichment tools available to the public. The analysis results show that the imported cardiovascular disease genes from ClinVar and OMIM are functionally different from the RGD manually curated genes in terms of pathway and Gene Ontology annotations. The inclusion of disease genes from other databases enriches the collection of disease genes not only in quantity but also in quality.


Cardiovascular Diseases/genetics , Genome/genetics , Animals , Databases, Genetic , Gene Ontology , Genomics/methods , Humans , Molecular Sequence Annotation/methods , Quantitative Trait Loci/genetics , Rats
17.
Article En | MEDLINE | ID: mdl-27009807

The Rat Genome Database (RGD;http://rgd.mcw.edu/) provides critical datasets and software tools to a diverse community of rat and non-rat researchers worldwide. To meet the needs of the many users whose research is disease oriented, RGD has created a series of Disease Portals and has prioritized its curation efforts on the datasets important to understanding the mechanisms of various diseases. Gene-disease relationships for three species, rat, human and mouse, are annotated to capture biomarkers, genetic associations, molecular mechanisms and therapeutic targets. To generate gene-disease annotations more effectively and in greater detail, RGD initially adopted the MEDIC disease vocabulary from the Comparative Toxicogenomics Database and adapted it for use by expanding this framework with the addition of over 1000 terms to create the RGD Disease Ontology (RDO). The RDO provides the foundation for, at present, 10 comprehensive disease area-related dataset and analysis platforms at RGD, the Disease Portals. Two major disease areas are the focus of data acquisition and curation efforts each year, leading to the release of the related Disease Portals. Collaborative efforts to realize a more robust disease ontology are underway. Database URL:http://rgd.mcw.edu.


Databases, Genetic , Disease/genetics , Gene Ontology , Genome , Molecular Sequence Annotation , Animals , Genetic Predisposition to Disease , Humans , Mice , Rats , Software , Species Specificity
18.
Article En | MEDLINE | ID: mdl-25619558

The Rat Genome Database (RGD) is the premier repository of rat genomic, genetic and physiologic data. Converting data from free text in the scientific literature to a structured format is one of the main tasks of all model organism databases. RGD spends considerable effort manually curating gene, Quantitative Trait Locus (QTL) and strain information. The rapidly growing volume of biomedical literature and the active research in the biological natural language processing (bioNLP) community have given RGD the impetus to adopt text-mining tools to improve curation efficiency. Recently, RGD has initiated a project to use OntoMate, an ontology-driven, concept-based literature search engine developed at RGD, as a replacement for the PubMed (http://www.ncbi.nlm.nih.gov/pubmed) search engine in the gene curation workflow. OntoMate tags abstracts with gene names, gene mutations, organism name and most of the 16 ontologies/vocabularies used at RGD. All terms/ entities tagged to an abstract are listed with the abstract in the search results. All listed terms are linked both to data entry boxes and a term browser in the curation tool. OntoMate also provides user-activated filters for species, date and other parameters relevant to the literature search. Using the system for literature search and import has streamlined the process compared to using PubMed. The system was built with a scalable and open architecture, including features specifically designed to accelerate the RGD gene curation process. With the use of bioNLP tools, RGD has added more automation to its curation workflow. Database URL: http://rgd.mcw.edu.


Data Mining/methods , Databases, Nucleic Acid , Gene Ontology , Genome , Natural Language Processing , Animals , PubMed , Rats
19.
Article En | MEDLINE | ID: mdl-25632109

Rats have been used extensively as animal models to study physiological and pathological processes involved in human diseases. Numerous rat strains have been selectively bred for certain biological traits related to specific medical interests. Recently, the Rat Genome Database (http://rgd.mcw.edu) has initiated the PhenoMiner project to integrate quantitative phenotype data from the PhysGen Program for Genomic Applications and the National BioResource Project in Japan as well as manual annotations from biomedical literature. PhenoMiner, the search engine for these integrated phenotype data, facilitates mining of data sets across studies by searching the database with a combination of terms from four different ontologies/vocabularies (Rat Strain Ontology, Clinical Measurement Ontology, Measurement Method Ontology and Experimental Condition Ontology). In this study, salt-induced hypertension was used as a model to retrieve blood pressure records of Brown Norway, Fawn-Hooded Hypertensive (FHH) and Dahl salt-sensitive (SS) rat strains. The records from these three strains served as a basis for comparing records from consomic/congenic/mutant offspring derived from them. We examined the cardiovascular and renal phenotypes of consomics derived from FHH and SS, and of SS congenics and mutants. The availability of quantitative records across laboratories in one database, such as these provided by PhenoMiner, can empower researchers to make the best use of publicly available data. Database URL: http://rgd.mcw.edu.


Angiotensin Amide , Biological Ontologies , Data Mining/methods , Databases, Genetic , Kidney Diseases , Software , Angiotensin Amide/genetics , Angiotensin Amide/metabolism , Animals , Humans , Kidney Diseases/genetics , Kidney Diseases/metabolism , Rats
20.
Nucleic Acids Res ; 43(Database issue): D743-50, 2015 Jan.
Article En | MEDLINE | ID: mdl-25355511

The Rat Genome Database (RGD, http://rgd.mcw.edu) provides the most comprehensive data repository and informatics platform related to the laboratory rat, one of the most important model organisms for disease studies. RGD maintains and updates datasets for genomic elements such as genes, transcripts and increasingly in recent years, sequence variations, as well as map positions for multiple assemblies and sequence information. Functional annotations for genomic elements are curated from published literature, submitted by researchers and integrated from other public resources. Complementing the genomic data catalogs are those associated with phenotypes and disease, including strains, QTL and experimental phenotype measurements across hundreds of strains. Data are submitted by researchers, acquired through bulk data pipelines or curated from published literature. Innovative software tools provide users with an integrated platform to query, mine, display and analyze valuable genomic and phenomic datasets for discovery and enhancement of their own research. This update highlights recent developments that reflect an increasing focus on: (i) genomic variation, (ii) phenotypes and diseases, (iii) data related to the environment and experimental conditions and (iv) datasets and software tools that allow the user to explore and analyze the interactions among these and their impact on disease.


Databases, Genetic , Genetic Variation , Genomics , Phenotype , Rats/genetics , Animals , Disease/genetics , Environment , Genome , Internet , Molecular Sequence Annotation
...