Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Theranostics ; 14(1): 249-264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38164151

RESUMEN

Rationale: 17ß-estradiol (E2) can directly promote the growth of ERα-negative cancer cells through activation of endothelial ERα in the tumor microenvironment, thereby increasing a normalized tumor angiogenesis. ERα acts as a transcription factor through its nuclear transcriptional AF-1 and AF-2 transactivation functions, but membrane ERα plays also an important role in endothelium. The present study aims to decipher the respective roles of these two pathways in ERα-negative tumor growth. Moreover, we delineate the actions of tamoxifen, a Selective Estrogen Receptor Modulator (SERM) in ERα-negative tumors growth and angiogenesis, since we recently demonstrated that tamoxifen impacts vasculature functions through complex modulation of ERα activity. Methods: ERα-negative B16K1 cancer cells were grafted into immunocompetent mice mutated for ERα-subfunctions and tumor growths were analyzed in these different models in response to E2 and/or tamoxifen treatment. Furthermore, RNA sequencings were analyzed in endothelial cells in response to these different treatments and validated by RT-qPCR and western blot. Results: We demonstrate that both nuclear and membrane ERα actions are required for the pro-tumoral effects of E2, while tamoxifen totally abrogates the E2-induced in vivo tumor growth, through inhibition of angiogenesis but promotion of vessel normalization. RNA sequencing indicates that tamoxifen inhibits the E2-induced genes, but also initiates a specific transcriptional program that especially regulates angiogenic genes and differentially regulates glycolysis, oxidative phosphorylation and inflammatory responses in endothelial cells. Conclusion: These findings provide evidence that tamoxifen specifically inhibits angiogenesis through a reprogramming of endothelial gene expression via regulation of some transcription factors, that could open new promising strategies to manage cancer therapies affecting the tumor microenvironment of ERα-negative tumors.


Asunto(s)
Neoplasias , Tamoxifeno , Ratones , Animales , Tamoxifeno/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Expresión Génica , Endotelio/metabolismo , Línea Celular Tumoral , Microambiente Tumoral/genética
2.
FEBS Lett ; 598(10): 1170-1198, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38140813

RESUMEN

Perilipins are abundant lipid droplet (LD) proteins present in all metazoans and also in Amoebozoa and fungi. Humans express five perilipins, which share a similar domain organization: an amino-terminal PAT domain and an 11-mer repeat region, which can fold into amphipathic helices that interact with LDs, followed by a structured carboxy-terminal domain. Variations of this organization that arose during vertebrate evolution allow for functional specialization between perilipins in relation to the metabolic needs of different tissues. We discuss how different features of perilipins influence their interaction with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct role in lipolysis by regulating the recruitment of lipases to LDs and LD interaction with mitochondria. Other perilipins, particularly PLIN2, appear to protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4 stands out with its long repetitive region, whereas PLIN3 is most widely expressed and is used as a nascent LD marker. Finally, we discuss the genetic variability in perilipins in connection with metabolic disease, prominent for PLIN1 and PLIN4, underlying the importance of understanding the molecular function of perilipins.


Asunto(s)
Gotas Lipídicas , Perilipinas , Humanos , Gotas Lipídicas/metabolismo , Animales , Perilipinas/metabolismo , Perilipinas/genética , Metabolismo de los Lípidos , Lipólisis , Perilipina-1/metabolismo , Perilipina-1/genética
3.
JCI Insight ; 8(5)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36729672

RESUMEN

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Asunto(s)
Células Endoteliales , Estrógenos , Animales , Ratones , Estrógenos/farmacología , Receptor alfa de Estrógeno/genética , Estradiol/farmacología , Arterias
4.
Front Pharmacol ; 13: 1049696, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532779

RESUMEN

Human P2Y4 is a UTP receptor, while in mice it is activated by both ATP and UTP. P2Y4 knockout (KO) in mice protects against myocardial infarction and is characterized by increased adiponectin secretion by adipocytes, and decreased cardiac inflammation and permeability under ischemic conditions. The relevance of these data has, however, not been explored to date in humans. In a population study comprising 50 patients with coronary artery disease (CAD) and 50 age-matched control individuals, we analyzed P2RY4 mutations and their potential association with CAD severity and fasting plasma parameters. Among the mutations identified, we focused our attention on a coding region polymorphism (rs3745601) that results in replacement of the asparagine at residue 178 with threonine (N178T) located in the second extracellular loop of the P2Y4 receptor. The N178T variant is a loss-of-function mutation of the human P2Y4 receptor and is encountered less frequently in coronary patients than in control individuals. In coronary patients, carriers of the N178T variant had significantly reduced jeopardy and Gensini cardiac severity scores, as well as lower resting heart rates and plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP). Regarding fasting plasma parameters, the N178T variant was associated with a lower concentration of glucose. Accordingly, P2Y4 KO mice had significantly improved glucose tolerance and insulin sensitivity compared with their WT littermate controls. The improvement of insulin sensitivity resulting from lack of the P2Y4 receptor was no longer observed in the absence of adiponectin. The present study identifies a frequent loss-of-function P2Y4 variant associated with less severe coronary artery atherosclerosis and lower fasting plasma glucose in coronary patients. The role of the P2Y4 receptor in glucose homeostasis was confirmed in mouse. P2Y4 antagonists could thus have therapeutic applications in the treatment of myocardial infarction and type 2 diabetes.

5.
Nutrients ; 14(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35956295

RESUMEN

Dietary amines have been the subject of a novel interest in nutrition since the discovery of trace amine-associated receptors (TAARs), especially TAAR-1, which recognizes tyramine, phenethylamine, tryptamine, octopamine, N-methyltyramine (NMT), synephrine, amphetamine and related derivatives. Alongside the psychostimulant properties of TAAR-1 ligands, it is their ephedrine-like action on weight loss that drives their current consumption via dietary supplements advertised for 'fat-burning' properties. Among these trace amines, tyramine has recently been described, at high doses, to exhibit an antilipolytic action and activation of glucose transport in human adipocytes, i.e., effects that are facilitating lipid storage rather than mobilization. Because of its close structural similarity to tyramine, NMT actions on human adipocytes therefore must to be reevaluated. To this aim, we studied the lipolytic and antilipolytic properties of NMT together with its interplay with insulin stimulation of glucose transport along with amine oxidase activities in adipose cells obtained from women undergoing abdominal surgery. NMT activated 2-deoxyglucose uptake when incubated with freshly isolated adipocytes at 0.01-1 mM, reaching one-third of the maximal stimulation by insulin. However, when combined with insulin, NMT limited by half the action of the lipogenic hormone on glucose transport. The NMT-induced stimulation of hexose uptake was sensitive to inhibitors of monoamine oxidases (MAO) and of semicarbazide-sensitive amine oxidase (SSAO), as was the case for tyramine and benzylamine. All three amines inhibited isoprenaline-induced lipolysis to a greater extent than insulin, while they were poorly lipolytic on their own. All three amines-but not isoprenaline-interacted with MAO or SSAO. Due to these multiple effects on human adipocytes, NMT cannot be considered as a direct lipolytic agent, potentially able to improve lipid mobilization and fat oxidation in consumers of NMT-containing dietary supplements.


Asunto(s)
Amina Oxidasa (conteniendo Cobre) , p-Hidroxianfetamina , Adipocitos , Amina Oxidasa (conteniendo Cobre)/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Monoaminooxidasa/metabolismo , Tiramina/análogos & derivados , Tiramina/metabolismo , Tiramina/farmacología , p-Hidroxianfetamina/metabolismo , p-Hidroxianfetamina/farmacología
6.
Arterioscler Thromb Vasc Biol ; 40(9): 2143-2158, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32640903

RESUMEN

OBJECTIVE: ERα (estrogen receptor alpha) exerts nuclear genomic actions and also rapid membrane-initiated steroid signaling. The mutation of the cysteine 451 into alanine in vivo has recently revealed the key role of this ERα palmitoylation site on some vasculoprotective actions of 17ß-estradiol (E2) and fertility. Here, we studied the in vivo role of the arginine 260 of ERα which has also been described to be involved in its E2-induced rapid signaling with PI-3K (phosphoinositide 3-kinase) as well as G protein in cultured cell lines. Approach and Results: We generated a mouse model harboring a point mutation of the murine counterpart of this arginine into alanine (R264A-ERα). In contrast to the C451A-ERα, the R264A-ERα females are fertile with standard hormonal serum levels and normal control of hypothalamus-pituitary ovarian axis. Although R264A-ERα protein abundance was normal, the well-described membrane ERα-dependent actions of estradiol, such as the rapid dilation of mesenteric arteries and the acceleration of endothelial repair of carotid, were abrogated in R264A-ERα mice. In striking contrast, E2-regulated gene expression was highly preserved in the uterus and the aorta, revealing intact nuclear/genomic actions in response to E2. Consistently, 2 recognized nuclear ERα-dependent actions of E2, namely atheroma prevention and flow-mediated arterial remodeling were totally preserved. CONCLUSIONS: These data underline the exquisite role of arginine 264 of ERα for endothelial membrane-initiated steroid signaling effects of E2 but not for nuclear/genomic actions. This provides the first model of fertile mouse with no overt endocrine abnormalities with specific loss-of-function of rapid ERα signaling in vascular functions.


Asunto(s)
Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Endotelio Vascular/efectos de los fármacos , Estradiol/farmacología , Receptor alfa de Estrógeno/agonistas , Terapia de Reemplazo de Estrógeno , Estrógenos/farmacología , Fertilidad/efectos de los fármacos , Arterias Mesentéricas/efectos de los fármacos , Mutación Puntual , Animales , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/prevención & control , Traumatismos de las Arterias Carótidas/metabolismo , Traumatismos de las Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/fisiopatología , Proliferación Celular/efectos de los fármacos , Endotelio Vascular/lesiones , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Activación Enzimática , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Ciclo Estral/efectos de los fármacos , Femenino , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ovariectomía , Repitelización/efectos de los fármacos , Transducción de Señal , Factores de Tiempo , Útero/efectos de los fármacos , Útero/metabolismo , Remodelación Vascular/efectos de los fármacos , Vasodilatación/efectos de los fármacos
7.
Cells ; 9(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111004

RESUMEN

During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias/metabolismo , Neoplasias/patología , Biosíntesis de Proteínas , Animales , Humanos , Modelos Biológicos , Transducción de Señal , Respuesta de Proteína Desplegada
8.
Cancers (Basel) ; 11(2)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691003

RESUMEN

Delta-like 4 (DLL4) is a pivotal endothelium specific Notch ligand that has been shown to function as a regulating factor during physiological and pathological angiogenesis. DLL4 functions as a negative regulator of angiogenic branching and sprouting. Interestingly, Dll4 is with Vegf-a one of the few examples of haplo-insufficiency, resulting in obvious vascular abnormalities and in embryonic lethality. These striking phenotypes are a proof of concept of the crucial role played by the bioavailability of VEGF and DLL4 during vessel patterning and that there must be a very fine-tuning of DLL4 expression level. However, to date the expression regulation of this factor was poorly studied. In this study, we showed that the DLL4 5'-UTR harbors an Internal Ribosomal Entry Site (IRES) that, in contrast to cap-dependent translation, was efficiently utilized in cells subjected to several stresses including hypoxia and endoplasmic reticulum stress (ER stress). We identified PERK, a kinase activated by ER stress, as the driver of DLL4 IRES-mediated translation, and hnRNP-A1 as an IRES-Trans-Acting Factor (ITAF) participating in the IRES-dependent translation of DLL4 during endoplasmic reticulum stress. The presence of a stress responsive internal ribosome entry site in the DLL4 msRNA suggests that the process of alternative translation initiation, by controlling the expression of this factor, could have a crucial role in the control of endothelial tip cell function.

9.
Mol Metab ; 15: 56-69, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29807870

RESUMEN

BACKGROUND: In addition to their crucial role in reproduction, estrogens are key regulators of energy and glucose homeostasis and they also exert several cardiovascular protective effects. These beneficial actions are mainly mediated by estrogen receptor alpha (ERα), which is widely expressed in metabolic and vascular tissues. As a member of the nuclear receptor superfamily, ERα was primarily considered as a transcription factor that controls gene expression through the activation of its two activation functions (ERαAF-1 and ERαAF-2). However, besides these nuclear actions, a pool of ERα is localized in the vicinity of the plasma membrane, where it mediates rapid signaling effects called membrane-initiated steroid signals (MISS) that have been well described in vitro, especially in endothelial cells. SCOPE OF THE REVIEW: This review aims to summarize our current knowledge of the mechanisms of nuclear vs membrane ERα activation that contribute to the cardiometabolic protection conferred by estrogens. Indeed, new transgenic mouse models (affecting either DNA binding, activation functions or membrane localization), together with the use of novel pharmacological tools that electively activate membrane ERα effects recently allowed to begin to unravel the different modes of ERα signaling in vivo. CONCLUSION: Altogether, available data demonstrate the prominent role of ERα nuclear effects, and, more specifically, of ERαAF-2, in the preventive effects of estrogens against obesity, diabetes, and atheroma. However, membrane ERα signaling selectively mediates some of the estrogen endothelial/vascular effects (NO release, reendothelialization) and could also contribute to the regulation of energy balance, insulin sensitivity, and glucose metabolism. Such a dissection of ERα biological functions related to its subcellular localization will help to understand the mechanism of action of "old" ER modulators and to design new ones with an optimized benefit/risk profile.


Asunto(s)
Miocitos Cardíacos/metabolismo , Receptores de Estrógenos/metabolismo , Transporte Activo de Núcleo Celular , Animales , Núcleo Celular/metabolismo , Estrógenos/metabolismo , Humanos , Receptores de Estrógenos/genética , Transducción de Señal
10.
Breast Cancer Res ; 18(1): 123, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27927249

RESUMEN

BACKGROUND: To date, all studies conducted on breast cancer diagnosis have focused on the expression of the full-length 66-kDa estrogen receptor alpha (ERα66). However, much less attention has been paid to a shorter 46-kDa isoform (ERα46), devoid of the N-terminal region containing the transactivation function AF-1. Here, we investigated the expression levels of ERα46 in breast tumors in relation to tumor grade and size, and examined the mechanism of its generation and its specificities of coregulatory binding and its functional activities. METHODS: Using approaches combining immunohistochemistry, Western blotting, and proteomics, antibodies allowing ERα46 detection were identified and the expression levels of ERα46 were quantified in 116 ERα-positive human breast tumors. ERα46 expression upon cellular stress was studied, and coregulator bindings, transcriptional, and proliferative response were determined to both ERα isoforms. RESULTS: ERα46 was expressed in over 70% of breast tumors at variable levels which sometimes were more abundant than ERα66, especially in differentiated, lower-grade, and smaller-sized tumors. We also found that ERα46 can be generated via internal ribosome entry site-mediated translation in the context of endoplasmic reticulum stress. The binding affinities of both unliganded and fully-activated receptors towards co-regulator peptides revealed that the respective potencies of ERα46 and ERα66 differ significantly, contributing to the differential transcriptional activity of target genes to 17ß estradiol (E2). Finally, increasing amounts of ERα46 decrease the proliferation rate of MCF7 tumor cells in response to E2. CONCLUSIONS: We found that, besides the full-length ERα66, the overlooked ERα46 isoform is also expressed in a majority of breast tumors. This finding highlights the importance of the choice of antibodies used for the diagnosis of breast cancer, which are able or not to detect the ERα46 isoform. In addition, since the function of both ERα isoforms differs, this work underlines the need to develop new technologies in order to discriminate ERα66 and ERα46 expression in breast cancer diagnosis which could have potential clinical relevance.


Asunto(s)
Neoplasias de la Mama/genética , Receptor alfa de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Empalme Alternativo , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Análisis por Conglomerados , Estrés del Retículo Endoplásmico , Estradiol/farmacología , Receptor alfa de Estrógeno/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inmunohistoquímica , Unión Proteica , Biosíntesis de Proteínas , Isoformas de Proteínas , Proteoma , Proteómica/métodos , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA