Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33803032

RESUMEN

Saturation effects limit the application of vegetation indices (VIs) in dense vegetation areas. The possibility to mitigate them by adopting a negative soil adjustment factor X is addressed. Two leaf area index (LAI) data sets are analyzed using the Google Earth Engine (GEE) for validation. The first one is derived from observations of MODerate resolution Imaging Spectroradiometer (MODIS) from 16 April 2013, to 21 October 2020, in the Apiacás area. Its corresponding VIs are calculated from a combination of Sentinel-2 and Landsat-8 surface reflectance products. The second one is a global LAI dataset with VIs calculated from Landsat-5 surface reflectance products. A linear regression model is applied to both datasets to evaluate four VIs that are commonly used to estimate LAI: normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), transformed SAVI (TSAVI), and enhanced vegetation index (EVI). The optimal soil adjustment factor of SAVI for LAI estimation is determined using an exhaustive search. The Dickey-Fuller test indicates that the time series of LAI data are stable with a confidence level of 99%. The linear regression results stress significant saturation effects in all VIs. Finally, the exhaustive searching results show that a negative soil adjustment factor of SAVI can mitigate the SAVIs' saturation in the Apiacás area (i.e., X = -0.148 for mean LAI = 5.35), and more generally in areas with large LAI values (e.g., X = -0.183 for mean LAI = 6.72). Our study further confirms that the lower boundary of the soil adjustment factor can be negative and that using a negative soil adjustment factor improves the computation of time series of LAI.


Asunto(s)
Hojas de la Planta , Suelo , Modelos Lineales , Imágenes Satelitales
2.
Surv Geophys ; 40: 631-656, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-36081835

RESUMEN

Imaging spectroscopy of vegetation requires methods for scaling and generalizing optical signals that are reflected, transmitted and emitted in the solar wavelength domain from single leaves and observed at the level of canopies by proximal sensing, airborne and satellite spectroradiometers. The upscaling embedded in imaging spectroscopy retrievals and validations of plant biochemical and structural traits is challenged by natural variability and measurement uncertainties. Sources of the leaf-to-canopy upscaling variability and uncertainties are reviewed with respect to: (1) implementation of retrieval algorithms and (2) their parameterization and validation of quantitative products through in situ field measurements. The challenges are outlined and discussed for empirical and physical leaf and canopy radiative transfer modelling components, considering both forward and inverse modes. Discussion on optical remote sensing validation schemes includes also description of a multiscale validation concept and its advantages. Impacts of intraspecific and interspecific variability on collected field and laboratory measurements of leaf biochemical traits and optical properties are demonstrated for selected plant species, and field measurement uncertainty sources are listed and discussed specifically for foliar pigments and canopy leaf area index. The review concludes with the main findings and suggestions as how to reduce uncertainties and include variability in scaling vegetation imaging spectroscopy signals and functional traits of single leaves up to observations of whole canopies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...