Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
J Extracell Vesicles ; 12(7): e12332, 2023 07.
Article En | MEDLINE | ID: mdl-37353884

The release of growth factors, cytokines and extracellular matrix modifiers by activated platelets is an important step in the process of healthy wound healing. Extracellular vesicles (EVs) released by activated platelets carry this bioactive cargo in an enriched form, and may therefore represent a potential therapeutic for the treatment of delayed wound healing, such as chronic wounds. While EVs show great promise in regenerative medicine, their production at clinical scale remains a critical challenge and their tolerability in humans is still to be fully established. In this work, we demonstrate that Ligand-based Exosome Affinity Purification (LEAP) chromatography can successfully isolate platelet EVs (pEVs) of clinical grade from activated platelets, which retain the regenerative properties of the parent cell. LEAP-isolated pEVs display the expected biophysical features of EV populations and transport essential proteins in wound healing processes, including insulin growth factor (IGF) and transforming growth factor beta (TGF-ß). In vitro studies show that pEVs induce proliferation and migration of dermal fibroblasts and increase dermal endothelial cells' angiogenic potential, demonstrating their wound healing potential. pEV treatment activates the ERK and Akt signalling pathways within recipient cells. In a first-in-human, double-blind, placebo-controlled, phase I clinical trial of healthy volunteer adults, designed primarily to assess safety in the context of wound healing, we demonstrate that injections of LEAP-purified pEVs in formulation buffer are safe and well tolerated (Plexoval II study, ACTRN12620000944932). As a secondary objective, biological activity in the context of wound healing rate was assessed. In this cohort of healthy participants, in which the wound bed would not be expected to be deficient in the bioactive cargo that pEVs carry, all wounds healed rapidly and completely and no difference in time to wound closure of the treated and untreated wounds was observed at the single dose tested. The outcomes of this study evidence that pEVs manufactured through the LEAP process can be injected safely in humans as a potential wound healing treatment, and warrant further study in clinical trials designed expressly to assess therapeutic efficacy in patients with delayed or disrupted wound healing.


Extracellular Vesicles , Hematopoietic Stem Cell Transplantation , Adult , Humans , Blood Platelets/metabolism , Endothelial Cells , Extracellular Vesicles/metabolism , Wound Healing/physiology
2.
Colloids Surf B Biointerfaces ; 170: 438-446, 2018 Oct 01.
Article En | MEDLINE | ID: mdl-29957533

A systematic investigation of the emulsifying properties of ruptured algae cells was performed for the first time. The slurry of ruptured algae cells was separated into different biomass fractions, namely the cell debris, the delipidated debris, the serum, and the lipid. The interfacial interactions of these biomass fractions with a nonpolar solvent (e.g. hexane or hexadecane) were characterized using pendant drop tensiometry and interfacial shear rheology. The stability of the different emulsions (formed by the different biomass fractions) was tested using analytical centrifugation. The extracted lipid was an excellent surfactant that reduced the interfacial tension, however, it was not effective at stabilizing the emulsions. The protein-rich serum produced a strong interfacial film that stabilized the emulsions against coalescence during centrifugation. The cell debris stabilized the emulsions to a lesser extent by adsorbing to the droplet surface, presumably via interactions with hydrophobic extracellular polymeric substances (EPS). However, neither the serum nor the cell debris were very effective surfactants, and required the presence of the lipid fraction to produce small emulsion droplets. When present together, the components exhibited competitive interfacial adsorption, which influenced emulsion stability. In particular, the interruption of the protein film by the presence of lipid or cell debris reduced the stability of the emulsions. This study provides a new mechanistic understanding of emulsification during wet lipid extraction from microalgae that will be useful for determining strategies to improve solvent recovery. The results also suggest potential for developing effective bioemulsifiers or biosurfactants from fractionated microalgae biomass for commercial application.


Lipids/chemistry , Lipids/isolation & purification , Microalgae/chemistry , Microalgae/cytology , Surface-Active Agents/chemistry , Animals , Cells, Cultured , Emulsions/chemistry , Mice , Particle Size , Surface Properties
3.
Bioresour Technol ; 260: 338-347, 2018 Jul.
Article En | MEDLINE | ID: mdl-29649726

A single-step method for transesterifying and recovering lipids in concentrated slurries (ca 20% w/w solids) of ruptured microalgae is presented. A soluble Rhizomucor miehei lipase (RML) was used to directly transesterify the lipids in the marine microalgae Nannochloropsis salina. This allowed both triglycerides (TAG) and polar saponifiable lipids to be recovered as fatty acid methyl esters (FAME) using a nonpolar solvent (hexane). Up to 90 wt% of the total saponifiable lipids (SL) were converted to FAME within 24 h, approximately 75% of which was recovered in the hexane by centrifugation. Two pathways for the conversion and recovery of polar lipids were identified. The water in the slurry buffered against potential lipase inhibition by methanol, but necessitated a high methanol dose for maximal FAME conversion. Nonetheless the method enables the recovery of polar lipids as FAME while avoiding the need for both drying of the biomass and a downstream transesterification step.


Biofuels , Lipase , Microalgae , Biomass , Esterification , Fatty Acids , Lipids , Solvents
...