Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Article En | MEDLINE | ID: mdl-38433703

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Diabetes Mellitus, Type 1 , Diet, High-Fat , Hyperglycemia , Mice, Inbred NOD , Animals , Diet, High-Fat/adverse effects , Female , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Mice , Hyperglycemia/etiology , Glucose Intolerance/etiology , Energy Metabolism , Liver/metabolism , Diet, Fat-Restricted , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
2.
Am J Physiol Endocrinol Metab ; 325(4): E336-E345, 2023 10 01.
Article En | MEDLINE | ID: mdl-37610410

Nonobese diabetic (NOD) mice are the most commonly used rodent model to study mechanisms relevant to the autoimmunity and immunology of type 1 diabetes. Although many different strains of mice have been used as controls for studies comparing nondiabetic lines to the NOD strain, we hypothesized that the parental strain that gave rise to the NOD line might be one of the best options. Therefore, we compared female ICR and NOD mice, which are matched at key major histocompatibility complex (MHC) loci, to understand their metabolic and immunologic similarities and differences. Several novel observations emerged: 1) NOD mice have greater circulating proinsulin when compared with ICR mice. 2) NOD mice display CD3+ and IBA1+ cell infiltration into and near pancreatic islets before hyperglycemia. 3) NOD mice show increased expression of the Il1b and Cxcl11 genes in islets when compared with islets from age-matched ICR mice. 4) NOD mice have a greater abundance of STAT1 and ICAM-1 protein in islets when compared with ICR mice. These data show that ICR mice, which are genetically similar to NOD mice, do not retain the same immunologic outcomes. Thus, ICR mice are an excellent choice as a genetically similar and MHC-matched control for NOD mice in studies designed to understand mechanisms relevant to autoimmune-mediated diabetes onset as well as novel therapeutic interventions.NEW & NOTEWORTHY Nonobese diabetic (NOD) mice have more proinsulin in circulation and STAT1 protein in islets compared with the major histocompatibility complex (MHC)-matched ICR line. NOD mice also display greater expression of cytokines and chemokines in pancreatic islets consistent with immune cell infiltration before hyperglycemia when compared with age-matched ICR mice. Thus, ICR mice represent an excellent control for autoimmunity and inflammation studies using the NOD line of mice.


Diabetes Mellitus, Type 1 , Hyperglycemia , Islets of Langerhans , Mice , Female , Animals , Mice, Inbred NOD , Mice, Inbred ICR , Proinsulin , Diabetes Mellitus, Type 1/genetics , Major Histocompatibility Complex , Hyperglycemia/genetics
...