Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 650(Pt B): 1361-1370, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480651

RESUMEN

Excessive CO2 emissions have contributed to global environmental issues, driving the development of CO2 capture adsorbents. Among various candidates, metal-organic frameworks (MOFs) are considered the most promising due to their unique microporous structure. Herein, a series of partially interpenetrated MOFs named UPC-XX were built to investigate the continuous enhancement in CO2 capture performance via synergistic effects from functional group, pore size, and steric-hindrance using theoretical calculations. It's showed that the introduction of functional groups improved the structure polarity and created more adsorption sites, thus, enhanced CO2 capture capacity. The pore size modification augments the exposure of adsorption sites to mitigate the negative impact of pore space and surface area reduction caused by the introduction of functional groups, thereby further increasing the CO2 capture capacity. The steric-hindrance effect optimized the adsorption sites distribution, which hasn't been considered in the previous two regulation strategies, thus, further increased the CO2 capture capacity. The results underscore UPC-MOFs as outstanding adsorbent materials, among the UPC-MOFs, UPC-OSO3-steric exhibited the highest CO2 capture capacity of 12.69 mmol/g with selectivities of 1142.41 (CO2 over N2) and 507.42 (CO2 over CH4) at 1.0 bar, 298 K. And the synergistic effect mechanisms of functional group, structure size, and steric hindrance were elucidated through theoretical calculations analyzing pore characteristics, gas distribution, isosteric heat, and van der Waals/Coulomb interactions.

2.
J Colloid Interface Sci ; 647: 375-383, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37269734

RESUMEN

Recently, surging interests exist in direct electrochemical ammonia (NH3) synthesis from nitric oxide (NO) due to the dual benefit of NH3 synthesis and NO removal. However, designing highly efficient catalysts is still challenging. Based on density functional theory, the best ten candidates of transition-metal atoms (TMs) embedded in phosphorus carbide (PC) monolayer is screened out as highly active catalysts for direct NO-to-NH3 electroreduction. The employment of machine learning-aided theoretical calculations helps to identify the critical role of TM-d orbitals in regulating NO activation. A V-shape tuning rule of TM-d orbitals for the Gibbs free energy change of NO or limiting potentials is further revealed as the design principle of TM embedded PC (TM-PC) for NO-to-NH3 electroreduction. Moreover, after employing effective screening strategies including surface stability, selectivity, the kinetic barrier of potential-determining step, and thermal stability comprehensively studied for the ten TM-PC candidates, only Pt embedded PC monolayer has been identified as the most promising direct NO-to-NH3 electroreduction with high feasibility and catalytic performance. This work not only offers a promising catalyst but also sheds light on the active origin and design principle of PC-based single-atom catalysts for NO-to-NH3 conversion.

3.
RSC Adv ; 10(45): 26658-26663, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35515781

RESUMEN

BiFeO3 thin films were spin coated onto FTO. BiFeO3/BiOI composites have been successfully synthesized by an electrochemical deposition method. The morphology, structure and optical absorption properties of the as-synthesized samples were characterized via XRD, SEM, and UV-Vis DRS. The effect of the BiOI electrodeposition cycles on the photoelectrochemical properties of the BiFeO3/BiOI composites were investigated. The results showed that the photoelectrochemical properties were enhanced under simulated solar light. The composite could achieve an optimum photocurrent density of 16.03 µA cm-2 at 0 V (vs. Ag/AgCl), which is more than twice that of pure BiFeO3 thin films (6.3 µA cm-2). In addition, the Mott-Schottky curves indicate an improvement in the carrier density of the composite. The enhanced photoelectrochemical properties of the composites can be attributed to the formation of a heterojunction at the interface and the band bending of the ferroelectric material BiFeO3.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA