Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 13608, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871849

RESUMEN

Transplantation of stem cell-derived ß-cells is a promising therapeutic advancement in the treatment of type 1 diabetes mellitus. A current limitation of this approach is the long differentiation timeline that generates a heterogeneous population of pancreatic endocrine cells. To address this limitation, an inducible lentiviral overexpression system of mature ß-cell markers was introduced into human induced-pluripotent stem cells (hiPSCs). Following the selection of the successfully transduced hiPSCs, the cells were treated with doxycycline in the pancreatic progenitor induction medium to support their transition toward the pancreatic lineage. Cells cultured with doxycycline presented the markers of interest, NGN3, PDX1, and MAFA, after five days of culture, and glucose-stimulated insulin secretion assays demonstrated that the cells were glucose-responsive in a monolayer culture. When cultured as a spheroid, the markers of interest and insulin secretion in a static glucose-stimulated insulin secretion assay were maintained; however, insulin secretion upon consecutive glucose challenges was limited. Comparison to human fetal and adult donor tissues identified that although the hiPSC-derived spheroids present similar markers to adult insulin-producing cells, they are functionally representative of fetal development. Together, these results suggest that with optimization of the temporal expression of these markers, forward programming of hiPSCs towards insulin-producing cells could be a possible alternative for islet transplantation.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular , Proteínas de Homeodominio , Células Madre Pluripotentes Inducidas , Células Secretoras de Insulina , Factores de Transcripción Maf de Gran Tamaño , Proteínas del Tejido Nervioso , Transactivadores , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Factores de Transcripción Maf de Gran Tamaño/genética , Insulina/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Secreción de Insulina/efectos de los fármacos , Células Cultivadas , Doxiciclina/farmacología
2.
Mater Today Bio ; 21: 100696, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37361552

RESUMEN

Understanding the immune system's foreign body response (FBR) is essential when developing and validating a biomaterial. Macrophage activation and proliferation are critical events in FBR that can determine the material's biocompatibility and fate in vivo. In this study, two different macro-encapsulation pouches intended for pancreatic islet transplantation were implanted into streptozotocin-induced diabetes rat models for 15 days. Post-explantation, the fibrotic capsules were analyzed by standard immunohistochemistry as well as non-invasive Raman microspectroscopy to determine the degree of FBR induced by both materials. The potential of Raman microspectroscopy to discern different processes of FBR was investigated and it was shown that Raman microspectroscopy is capable of targeting ECM components of the fibrotic capsule as well as pro and anti-inflammatory macrophage activation states, in a molecular-sensitive and marker-independent manner. In combination with multivariate analysis, spectral shifts reflecting conformational differences in Col I were identified and allowed to discriminate fibrotic and native interstitial connective tissue fibers. Moreover, spectral signatures retrieved from nuclei demonstrated changes in methylation states of nucleic acids in M1 and M2 phenotypes, relevant as indicator for fibrosis progression. This study could successfully implement Raman microspectroscopy as complementary tool to study in vivo immune-compatibility providing insightful information of FBR of biomaterials and medical devices, post-implantation.

3.
Acta Biomater ; 162: 278-291, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36931422

RESUMEN

Fibrosis is a consequence of the pathological remodeling of extracellular matrix (ECM) structures in the connective tissue of an organ. It is often caused by chronic inflammation, which over time, progressively leads to an excess deposition of collagen type I (COL I) that replaces healthy tissue structures, in many cases leaving a stiff scar. Increasing fibrosis can lead to organ failure and death; therefore, developing methods that potentially allow real-time monitoring of early onset or progression of fibrosis are highly valuable. In this study, the ECM structures of diseased and healthy human tissue from multiple organs were investigated for the presence of fibrosis using routine histology and marker-independent Raman microspectroscopy and Raman imaging. Spectral deconvolution of COL I Raman spectra allowed the discrimination of fibrotic and non-fibrotic COL I fibers. Statistically significant differences were identified in the amide I region of the spectral subpeak at 1608 cm-1, which was deemed to be representative for structural changes in COL I fibers in all examined fibrotic tissues. Raman spectroscopy-based methods in combination with this newly discovered spectroscopic biomarker potentially offer a diagnostic approach to non-invasively track and monitor the progression of fibrosis. STATEMENT OF SIGNIFICANCE: Current diagnosis of fibrosis still relies on histopathological examination with invasive biopsy procedures. Although, several non-invasive imaging techniques such as positron emission tomography, single-photon emission computed tomography and second harmonic generation are gradually employed in preclinical or clinical studies, these techniques are limited in spatial resolution and the morphological interpretation highly relies on individual experience and knowledge. In this study, we propose a non-destructive technique, Raman microspectroscopy, to discriminate fibrotic changes of collagen type I based on a molecular biomarker. The changes of the secondary structure of collagen type I can be identified by spectral deconvolution, which potentially can provide an automatic diagnosis for fibrotic tissues in the clinical applicaion.


Asunto(s)
Colágeno Tipo I , Matriz Extracelular , Humanos , Espectrometría Raman/métodos , Cicatriz , Biomarcadores
4.
Matrix Biol ; 115: 160-183, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36592738

RESUMEN

Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human ß-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated ß-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting ß-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Humanos , Decorina/genética , Decorina/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Islotes Pancreáticos/metabolismo , Páncreas/metabolismo
5.
Adv Drug Deliv Rev ; 189: 114481, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36002043

RESUMEN

The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting ß-cell biology, as well as the mechanisms responsible for their autoimmune destruction. ß-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic ß-cells, pathology of T1D and current state of ß-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulinas , Trasplante de Islotes Pancreáticos , Diferenciación Celular , Diabetes Mellitus Tipo 1/cirugía , Humanos , Insulina , Insulinas/metabolismo
6.
Cancers (Basel) ; 14(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35454839

RESUMEN

(1) Background: Cervical intraepithelial neoplasia (CIN) of long-term persistence or associated with individual treatment indications often requires highly invasive treatments. These are associated with risks of bleeding, infertility, and pregnancy complications. For low- and middle-income countries (LMICs), standard treatment procedures are difficult to implement and manage. We characterized the application of the highly energized gas "noninvasive physical plasma" (NIPP) for tissue devitalization and the treatment of CIN. (2) Methods: We report the establishment of a promising tissue devitalization procedure by NIPP application. The procedure was characterized at the in vitro, ex vivo and in vivo levels. We performed the first prospective, single-armed phase-IIb trial in 20 CIN1/2 patients (NCT03218436). (3) Results: NIPP-treated cervical cancer cells used as dysplastic in vitro model exhibited significant cell growth retardation due to DNA damage, cell cycle arrest and apoptosis. Ex vivo and in vivo tissue assessments showed a highly noninvasive and tissue-preserving treatment procedure which induces transmucosal tissue devitalization. Twenty participants were treated with NIPP and attended a 24-week follow-up. Treatment success was achieved in 19 (95%) participants without postinterventional complications other than mild to moderate discomfort during application. (4) Conclusions: The results from this study preliminarily suggest that NIPP could be used for an effective and tissue-preserving treatment for CIN without the disadvantages of standard treatments. However, randomized controlled trials must confirm the efficacy and noninferiority of NIPP compared to standard treatments.

7.
Cancers (Basel) ; 13(22)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34830837

RESUMEN

Hurdles for effective tumor therapy are delayed detection and limited effectiveness of systemic drug therapies by patient-specific multidrug resistance. Non-invasive bioimaging tools such as fluorescence lifetime imaging microscopy (FLIM) and Raman-microspectroscopy have evolved over the last decade, providing the potential to be translated into clinics for early-stage disease detection, in vitro drug screening, and drug efficacy studies in personalized medicine. Accessing tissue- and cell-specific spectral signatures, Raman microspectroscopy has emerged as a diagnostic tool to identify precancerous lesions, cancer stages, or cell malignancy. In vivo Raman measurements have been enabled by recent technological advances in Raman endoscopy and signal-enhancing setups such as coherent anti-stokes Raman spectroscopy or surface-enhanced Raman spectroscopy. FLIM enables in situ investigations of metabolic processes such as glycolysis, oxidative stress, or mitochondrial activity by using the autofluorescence of co-enzymes NADH and FAD, which are associated with intrinsic proteins as a direct measure of tumor metabolism, cell death stages and drug efficacy. The combination of non-invasive and molecular-sensitive in situ techniques and advanced 3D tumor models such as patient-derived organoids or microtumors allows the recapitulation of tumor physiology and metabolism in vitro and facilitates the screening for patient-individualized drug treatment options.

8.
Tissue Eng Part C Methods ; 27(11): 589-604, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34693733

RESUMEN

In this study, we describe the production of hybrid gelatin-poly-L-lactide electrospun scaffolds whose hydrophilicity was controlled by binding increasing concentrations of hyaluronic acid (HA). We show that cross-linking has advantages over coating when aiming to functionalize the scaffolds with HA. The here described scaffolds structurely mimicked the complexity of the extracellular matrix, and when excited by second harmonic generation, they produced a signal that is typical of collagen-containing biological fibers. Fluorescence lifetime imaging microscopy (FLIM) was used to marker-independently monitor the growth of human dermal fibroblasts on the electrospun scaffolds using reduced (phosphorylated) nicotinamide adenine dinucleotide as target. Benefitting from the different fluorescence lifetimes of the polymer and the endogenous cellular fluorophore, we were able to distinguish and separate the signals produced by the cells from the signals generated by the electrospun scaffolds. FLIM further allowed the detection of metabolic differences in the cells seeded on the HA-functionalized scaffolds compared with cells that were cultured on nonfunctionalized control scaffolds.


Asunto(s)
Gelatina , Ácido Hialurónico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Poliésteres
9.
Tissue Eng Part C Methods ; 27(10): 515-528, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34541880

RESUMEN

Advancements in type 1 diabetes mellitus treatments have vastly improved in recent years. The move toward a bioartificial pancreas and other fully implantable systems could help restore patient's glycemic control. However, the long-term success of implantable medical devices is often hindered by the foreign body response. Fibrous encapsulation "walls off" the implant to the surrounding tissue, impairing its functionality. In this study we aim to examine how streptozotocin-induced diabetes affects fibrous capsule formation and composition surrounding implantable drug delivery devices following subcutaneous implantation in a rodent model. After 2 weeks of implantation, the fibrous capsule surrounding the devices were examined by means of Raman spectroscopy, micro-computed tomography (µCT), and histological analysis. Results revealed no change in mean fibrotic capsule thickness between diabetic and healthy animals as measured by µCT. Macrophage numbers (CCR7 and CD163 positive) remained similar across all groups. True component analysis also showed no quantitative difference in the alpha-smooth muscle actin and extracellular matrix proteins. Although principal component analysis revealed significant secondary structural difference in collagen I in the diabetic group, no evidence indicates an influence on fibrous capsule composition surrounding the device. This study confirms that diabetes did not have an effect on the fibrous capsule thickness or composition surrounding our implantable drug delivery device. Impact Statement Understanding the impact diabetes has on the foreign body response (FBR) to our implanted material is essential for developing an effective drug delivery device. We used several approaches (Raman spectroscopy and micro-computed tomography imaging) to demonstrate a well-rounded understanding of the diabetic impact on the FBR to our devices, which is imperative for its clinical translation.


Asunto(s)
Diabetes Mellitus , Cuerpos Extraños , Animales , Cuerpos Extraños/diagnóstico por imagen , Prótesis e Implantes , Roedores , Microtomografía por Rayos X
10.
Adv Sci (Weinh) ; 8(4): 2002500, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33643791

RESUMEN

Ischemia impacts multiple organ systems and is the major cause of morbidity and mortality in the developed world. Ischemia disrupts tissue homeostasis, driving cell death, and damages tissue structure integrity. Strategies to heal organs, like the infarcted heart, or to replace cells, as done in pancreatic islet ß-cell transplantations, are often hindered by ischemic conditions. Here, it is discovered that the basement membrane glycoprotein nidogen-1 attenuates the apoptotic effect of hypoxia in cardiomyocytes and pancreatic ß-cells via the αvß3 integrin and beneficially modulates immune responses in vitro. It is shown that nidogen-1 significantly increases heart function and angiogenesis, while reducing fibrosis, in a mouse postmyocardial infarction model. These results demonstrate the protective and regenerative potential of nidogen-1 in ischemic conditions.

11.
Tissue Eng Part A ; 27(13-14): 977-991, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33023407

RESUMEN

The use of biomaterials and biomaterial functionalization is a promising approach to support pancreatic islet viability posttransplantation in an effort to reduce insulin dependence for patients afflicted with diabetes mellitus type 1. Extracellular matrix (ECM) proteins are known to impact numerous reparative functions in the body. Assessing how endogenously expressed pancreatic ECM proteins are affected by posttransplant-like hypoxic conditions may provide significant insights toward the development of tissue-engineered therapeutic strategies to positively influence ß-cell survival, proliferation, and functionality. Here, we investigated the expression of three relevant groups of pancreatic ECM proteins in human native tissue, including basement membrane (BM) proteins (collagen type 4 [COL4], laminins [LAM]), proteoglycans (decorin [DCN], nidogen-1 [NID1]), and fibril-forming proteins (fibronectin [FN], collagen type 1 [COL1]). In an in vitro hypoxia model, we identified that ECM proteins were differently affected by hypoxic conditions, contributing to an overall loss of ß-cell functionality. The use of a COL1 hydrogel as carrier material demonstrated a protective effect on ß-cells mitigating the effect of hypoxia on proteoglycans as well as fibril-forming protein expression, supporting ß-cell functionality in hypoxia. We further showed that providing endothelial cells (ECs) into the COL1 hydrogel improves ß-cell response as well as the expression of relevant BM proteins. Our data show that ß-cells benefit from a microenvironment composed of structure-providing COL1 with the incorporation of ECs to withstand the harsh conditions of hypoxia. Such hydrogels support ß-cell survival and can serve as an initial source of ECM proteins to allow cell engraftment while preserving cell functionality posttransplantation. Impact statement Expression analysis identifies hypoxia-induced pathological changes in extracellular matrix (ECM) homeostasis as potential targets to support ß-cell transplants by encapsulation in biomaterials for the treatment of diabetes mellitus. A collagen-1 hydrogel is shown to attenuate the effect of hypoxia on ß-cells and their ECM expression. The functionalization of the hydrogel with endothelial cells increases the ß-cell response to glucose and rescues essential basement membrane proteins.


Asunto(s)
Células Endoteliales , Matriz Extracelular , Técnicas de Cocultivo , Colágeno , Proteínas de la Matriz Extracelular , Humanos , Laminina
12.
J Biophotonics ; 13(12): e202000375, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33026180

RESUMEN

Pancreatic islet isolation from donor pancreases is an essential step for the transplantation of insulin-secreting ß-cells as a therapy to treat type 1 diabetes mellitus. This process however damages islet basement membranes, which can lead to islet dysfunction or death. Posttransplantation, islets are further stressed by a hypoxic environment and immune reactions that cause poor engraftment and graft failure. The current standards to assess islet quality before transplantation are destructive procedures, performed on a small islet population that does not reflect the heterogeneity of large isolated islet batches. In this study, we incorporated fluorescence lifetime imaging microscopy (FLIM) into a pancreas-on-chip system to establish a protocol to noninvasively assess the viability and functionality of pancreatic ß-cells in a three-dimensional in vitro model (= pseudo-islets). We demonstrate how (pre-) hypoxic ß-cell-composed pseudo-islets can be discriminated from healthy functional pseudo-islets according to their FLIM-based metabolic profiles. The use of FLIM during the pretransplantation pancreatic islet selection process has the potential to improve the outcome of ß-cell islet transplantation.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Fluorescencia , Humanos , Hipoxia
13.
Matrix Biol ; 85-86: 205-220, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31238092

RESUMEN

The increasing prevalence of diabetes, its heterogeneity, and the limited number of treatment options drive the need for physiologically relevant assay platforms with human genetic background that have the potential to improve mechanistic understanding and e\xpedite diabetes-related research and treatment. In this study, we developed an endocrine pancreas-on-a-chip model based on a tailored microfluidic platform, which enables self-guided trapping of single human pseudo-islets. Continuous, low-shear perfusion provides a physiologically relevant microenvironment especially important for modeling and monitoring of the endocrine function as well as sufficient supply with nutrients and oxygen. Human pseudo-islets, generated from the conditionally immortalized EndoC-ßH3 cell line, were successfully injected by hydrostatic pressure-driven flow without altered viability. To track insulin secretion kinetics in response to glucose stimulation in a time-resolved manner, dynamic sampling of the supernatant as well as non-invasive real-time monitoring using Raman microspectroscopy was established on-chip. Dynamic sampling indicated a biphasic glucose-stimulated insulin response. Raman microspectroscopy allowed to trace glucose responsiveness in situ and to visualize different molecular structures such as lipids, mitochondria and nuclei. In-depth spectral analyses demonstrated a glucose stimulation-dependent, increased mitochondrial activity, and a switch in lipid composition of insulin secreting vesicles, supporting the high performance of our pancreas-on-a-chip model.


Asunto(s)
Glucosa/farmacología , Insulina/metabolismo , Islotes Pancreáticos/citología , Línea Celular , Microambiente Celular , Humanos , Islotes Pancreáticos/efectos de los fármacos , Islotes Pancreáticos/metabolismo , Dispositivos Laboratorio en un Chip , Técnicas de Cultivo de Órganos , Espectrometría Raman
14.
Matrix Biol ; 85-86: 1-14, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805360

RESUMEN

The cells and tissues of the human body are constantly exposed to exogenous and endogenous forces that are referred to as biomechanical cues. They guide and impact cellular processes and cell fate decisions on the nano-, micro- and macro-scale, and are therefore critical for normal tissue development and maintaining tissue homeostasis. Alterations in the extracellular matrix composition of a tissue combined with abnormal mechanosensing and mechanotransduction can aberrantly activate signaling pathways that promote disease development. Such processes are therefore highly relevant for disease modelling or when aiming for the development of novel therapies. In this mini review, we describe the main biomechanical cues that impact cellular fates. We highlight their role during development, homeostasis and in disease. We also discuss current techniques and tools that allow us to study the impact of biomechanical cues on cell and tissue development under physiological conditions, and we point out directions, in which in vitro biomechanics can be of use in the future.


Asunto(s)
Ingeniería Celular/métodos , Matriz Extracelular/metabolismo , Ingeniería de Tejidos/métodos , Animales , Fenómenos Biomecánicos , Homeostasis , Humanos
15.
Tissue Eng Part A ; 26(7-8): 387-399, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31680653

RESUMEN

ß-Cell functionality and survival are highly dependent on the cells' microenvironment and cell-cell interactions. Since the pancreas is a highly vascularized organ, the crosstalk between ß-cells and endothelial cells (ECs) is vital to ensure proper function. To understand the interaction of pancreatic ß-cells with vascular ECs, we sought to investigate the impact of the spatial distribution on the interaction of human cell line-based ß-cells (EndoC-ßH3) and human umbilical vein endothelial cells (HUVECs). We focused on the evaluation of three major spatial distributions, which can be found within human islets in vivo, in tissue-engineered heterotypic cell spheroids, so-called pseudo-islets, by controlling the aggregation process using magnetic levitation. We report that heterotypic spheroids formed by spontaneous aggregation cannot be maintained in culture due to HUVEC disassembly over time. In contrast, magnetic levitation allows the formation of stable heterotypic spheroids with defined spatial distribution and significantly facilitated HUVEC integration. To the best of our knowledge, this is the first study that introduces a human-only cell line-based in vitro test system composed of a coculture of ß-cells and ECs with a successful stimulation of ß-cell secretory function monitored by a glucose-stimulated insulin secretion assays. In addition, we systematically investigate the impact of the spatial distribution on cocultures of human ß-cells and ECs, showing that the architecture of pseudo-islets significantly affects ß-cell functionality. Impact statement Tissue engineering of coculture systems containing ß-cells and endothelial cells (ECs) is a promising technique to stimulate ß-cell functionality. In this study, we analyzed human pancreatic islet tissue and revealed three different native distributions of ß-cells and ECs. We successfully recreated these distributions in vitro by employing magnetic levitation of human ß-cells and ECs, forming controlled heterotypic pseudo-islets, which enabled us to identify a significant impact of the pseudo-islet architecture on insulin secretion.


Asunto(s)
Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Glucosa/farmacología , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Ratas , Ingeniería de Tejidos/métodos
16.
Tissue Eng Part A ; 24(1-2): 57-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28463641

RESUMEN

Myocardial infarction (MI) results in debilitating remodeling of the myocardial extracellular matrix (ECM). In this proof-of-principle study it was sought to modulate this aggressive remodeling by injecting a hyaluronic acid-based reservoir delivering exogenous microRNA-29B (miR-29B). This proof-of-principal study was executed whereby myocardial ischemia/reperfusion was performed on C57BL/6 mice for 45 min after which five 10 µL boluses of a hydrogel composed of thiolated hyaluronic acid cross-linked with poly (ethylene glycol) diacrylate, containing exogenous miR-29B as an active therapy, were injected into the border zone of the infarcted myocardium. Following surgery, the myocardial function of the animals was monitored up to 5 weeks. Delivering miR-29B locally using an injectable hyaluronan-based hydrogel resulted in the maintenance of myocardial function at 2 and 5 weeks following MI in this proof-of-principle study. In addition, while animals treated with the control of a nontargeting miR delivered using the hyaluronan-based hydrogel had a significant deterioration of myocardial function, those treated with miR-29B did not. Histological analysis revealed a significantly decreased presence of elastin and significantly less immature/newly deposited collagen fibers at the border zone of the infarct. Increased vascularity of the myocardial scar was also detected and Raman microspectroscopy discovered significantly altered ECM-specific biochemical signals at the border zone of the infarct. This preclinical proof-of-principle study demonstrates that an injectable hyaluronic acid hydrogel system could be capable of delivering miR-29B toward maintaining cardiac function following MI. In addition, Raman microspectroscopy revealed subtle, yet significant changes in ECM organization and maturity. These findings have great potential with regard to using injectable biomaterials as a local treatment for ischemic tissue and exogenous miRs to modulate tissue remodeling.


Asunto(s)
Ácido Hialurónico/química , MicroARNs/fisiología , Infarto del Miocardio/terapia , Miocardio/metabolismo , Animales , Ecocardiografía , Hidrogeles/química , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Infarto del Miocardio/metabolismo , Miocardio/citología , Espectrometría Raman
17.
Biomed Mater ; 13(2): 024101, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29148433

RESUMEN

Bioreactors are essential cell and tissue culture tools that allow the introduction of biophysical signals into in vitro cultures. One major limitation is the need to interrupt experiments and sacrifice samples at certain time points for analyses. To address this issue, we designed a bioreactor that combines high-resolution contact-free imaging and continuous flow in a closed system that is compatible with various types of microscopes. The high throughput fluid flow bioreactor was combined with two-photon fluorescence lifetime imaging microscopy (2P-FLIM) and validated. The hydrodynamics of the bioreactor chamber were characterized using COMSOL. The simulation of shear stress indicated that the bioreactor system provides homogeneous and reproducible flow conditions. The designed bioreactor was used to investigate the effects of low shear stress on human umbilical vein endothelial cells (HUVECs). In a scratch assay, we observed decreased migration of HUVECs under shear stress conditions. Furthermore, metabolic activity shifts from glycolysis to oxidative phosphorylation-dependent mechanisms in HUVECs cultured under low shear stress conditions were detected using 2P-FLIM. Future applications for this bioreactor range from observing cell fate development in real-time to monitoring the environmental effects on cells or metabolic changes due to drug applications.


Asunto(s)
Reactores Biológicos , Microscopía Fluorescente/métodos , Técnicas de Cultivo de Célula , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrodinámica , Fotones , Resistencia al Corte , Estrés Mecánico , Cicatrización de Heridas
18.
Curr Opin Biotechnol ; 40: 49-55, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26945640

RESUMEN

Transdifferentiation of one cell type to another has garnered significant research efforts in recent years. As cardiomyocyte loss following myocardial infarction becomes debilitating for cardiac patients, the option of an autologous source of cardiomyocytes not derived from multi/pluripotent stem cell sources is an attractive option. Such direct programming has been clearly realized with the use of transcription factors, microRNAs and more recently small molecule delivery to enhance epigenetic modifications, all albeit with low efficiencies in vitro. In this review, we aim to present a brief overview of the current in vitro and in vivo transdifferentiation strategies in the generation of cardiomyocytes from somatic sources. The interdisciplinary fields of tissue, cell, material and regenerative engineering offer many opportunities to synergistically achieve directly programmed cardiac tissue in vitro and enhance transdifferentiation in vivo. This review aims to present a concise outlook on this topic with these fields in mind.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Miocitos Cardíacos/citología , Animales , Fenómenos Biomecánicos , Transdiferenciación Celular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción/metabolismo
19.
Stem Cell Reports ; 6(2): 188-99, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26777059

RESUMEN

One major obstacle to the application of stem cell-derived cardiomyocytes (CMs) for disease modeling and clinical therapies is the inability to identify the developmental stage of these cells without the need for genetic manipulation or utilization of exogenous markers. In this study, we demonstrate that Raman microspectroscopy can non-invasively identify embryonic stem cell (ESC)-derived chamber-specific CMs and monitor cell maturation. Using this marker-free approach, Raman peaks were identified for atrial and ventricular CMs, ESCs were successfully discriminated from their cardiac derivatives, a distinct phenotypic spectrum for ESC-derived CMs was confirmed, and unique spectral differences between fetal versus adult CMs were detected. The real-time identification and characterization of CMs, their progenitors, and subpopulations by Raman microspectroscopy strongly correlated to the phenotypical features of these cells. Due to its high molecular resolution, Raman microspectroscopy offers distinct analytical characterization for differentiating cardiovascular cell populations.


Asunto(s)
Diferenciación Celular , Atrios Cardíacos/citología , Ventrículos Cardíacos/citología , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Espectrometría Raman/métodos , Animales , Linaje de la Célula , Células Madre Embrionarias/citología , Feto/citología , Atrios Cardíacos/embriología , Ventrículos Cardíacos/embriología , Humanos , Ratones , Miocardio/citología
20.
Development ; 143(3): 473-82, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26674310

RESUMEN

The elucidation of mechanisms in semilunar valve development might enable the development of new therapies for congenital heart disorders. Here, we found differences in proliferation-associated genes and genes repressed by VEGF between human semilunar valve leaflets from first and second trimester hearts. The proliferation of valve interstitial cells and ventricular valve endothelial cells (VECs) and cellular density declined from the first to the second trimester. Cytoplasmic expression of NFATC1 was detected in VECs (4 weeks) and, later, cells in the leaflet/annulus junction mesenchyme expressing inactive NFATC1 (5.5-9 weeks) were detected, indicative of endocardial-to-mesenchymal transformation (EndMT) in valvulogenesis. At this leaflet/annulus junction, CD44(+) cells clustered during elongation (11 weeks), extending toward the tip along the fibrosal layer in second trimester leaflets. Differing patterns of maturation in the fibrosa and ventricularis were detected via increased fibrosal periostin content, which tracked the presence of the CD44(+) cells in the second trimester. We revealed that spatiotemporal NFATC1 expression actively regulates EndMT during human valvulogenesis, as early as 4 weeks. Additionally, CD44(+) cells play a role in leaflet maturation toward the trilaminar structure, possibly via migration of VECs undergoing EndMT, which subsequently ascend from the leaflet/annulus junction.


Asunto(s)
Endocardio/embriología , Válvulas Cardíacas/citología , Válvulas Cardíacas/embriología , Mesodermo/citología , Mesodermo/embriología , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Diferenciación Celular , Proliferación Celular , Células Endoteliales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Receptores de Hialuranos/metabolismo , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Embarazo , Segundo Trimestre del Embarazo , Análisis Espacio-Temporal , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...