Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 452: 114588, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37474023

RESUMEN

Chronic neuropathic pain (CNP) is a vast world health problem often associated with the somatosensory domain. This conceptualization is problematic because, unlike most other sensations that are usually affectively neutral and may present emotional, affective, and cognitive impairments. Neuronal circuits that modulate pain can increase or decrease painful sensitivity based on several factors, including context and expectation. The objective of this study was to evaluate whether subchronic treatment with Cannabidiol (CBD; 0.3, 3, and 10 mg/kg intraperitoneal route - i.p., once a day for 3 days) could promote pain-conditioned reversal, in the conditioned place preference (CPP) test, in male Wistar rats submitted to chronic constriction injury (CCI) of the sciatic nerve. Then, we evaluated the expression of astrocytes and microglia in animals treated with CBD through the immunofluorescence technique. Our results demonstrated that CBD promoted the reversal of CPP at 3 and 10 mg/kg. In CCI animals, CBD was able to attenuate the increase in neuronal hyperactivity, measured by FosB protein expression, in the regions of the corticolimbic circuit: anterior cingulate cortex (ACC), complex basolateral amygdala (BLA), granular layer of the dentate gyrus (GrDG), and dorsal hippocampus (DH) - adjacent to subiculum (CA1). CBD also prevented the increased expression of GFAP and IBA-1 in CCI animals. We concluded that CBD effects on CNP are linked to the modulation of the aversive component of pain. These effects decrease chronic neuronal activation and inflammatory markers in regions of the corticolimbic circuit.


Asunto(s)
Cannabidiol , Neuralgia , Ratas , Animales , Masculino , Ratas Wistar , Cannabidiol/farmacología , Reacción de Prevención , Enfermedades Neuroinflamatorias , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo
2.
J Alzheimers Dis ; 94(3): 1179-1196, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37393501

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative and progressive disorder with no cure and constant failures in clinical trials. The main AD hallmarks are amyloid-ß (Aß) plaques, neurofibrillary tangles, and neurodegeneration. However, many other events have been implicated in AD pathogenesis. Epilepsy is a common comorbidity of AD and there is important evidence indicating a bidirectional link between these two disorders. Some studies suggest that disturbed insulin signaling might play an important role in this connection. OBJECTIVE: To understand the effects of neuronal insulin resistance in the AD-epilepsy link. METHODS: We submitted the streptozotocin (STZ) induced rat AD Model (icv-STZ AD) to an acute acoustic stimulus (AS), a known trigger of seizures. We also assessed animals' performance in the memory test, the Morris water maze and the neuronal activity (c-Fos protein) induced by a single audiogenic seizure in regions that express high levels of insulin receptors. RESULTS: We identified significant memory impairment and seizures in 71.43% of all icv-STZ/AS rats, in contrast to 22.22% of the vehicle group. After seizures, icv-STZ/AS rats presented higher number of c-Fos immunopositive cells in hippocampal, cortical, and hypothalamic regions. CONCLUSION: STZ may facilitate seizure generation and propagation by impairment of neuronal function, especially in regions that express high levels of insulin receptors. The data presented here indicate that the icv-STZ AD model might have implications not only for AD, but also for epilepsy. Finally, impaired insulin signaling might be one of the mechanisms by which AD presents a bidirectional connection to epilepsy.


Asunto(s)
Enfermedad de Alzheimer , Ratas , Animales , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/metabolismo , Estreptozocina/toxicidad , Receptor de Insulina/metabolismo , Insulina/metabolismo , Convulsiones/inducido químicamente , Modelos Animales de Enfermedad , Aprendizaje por Laberinto
3.
Epilepsy Behav ; 141: 109160, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36907082

RESUMEN

Anxiety and pain hypersensitivity are neurobehavioral comorbidities commonly reported by patients with epilepsies, and preclinical models are suitable to investigate the neurobiology of behavioral and neuropathological alterations associated with these epilepsy-related comorbidities. This work aimed to characterize endogenous alterations in nociceptive threshold and anxiety-like behaviors in the Wistar Audiogenic Rat (WAR) model of genetic epilepsy. We also assessed the effects of acute and chronic seizures on anxiety and nociception. WARs from acute and chronic seizure protocols were divided into two groups to assess short- and long-term changes in anxiety (1 day or 15 days after seizures, respectively). To assess anxiety-like behaviors, the laboratory animals were submitted to the open field, light-dark box, and elevated plus maze tests. The von Frey, acetone, and hot plate tests were used to measure the endogenous nociception in seizure-free WARs, and postictal antinociception was recorded at 10, 30, 60, 120, 180 min, and 24 h after seizures. Seizure-free WARs presented increased anxiety-like behaviors and pain hypersensitivity, displaying mechanical and thermal allodynia (to heat and cold stimuli) in comparison to nonepileptic Wistar rats. Potent postictal antinociception that persisted for 120 to 180 min was detected after acute and chronic seizures. Additionally, acute and chronic seizures have magnified the expression of anxiety-like behaviors when assessed at 1 day and 15 days after seizures. Behavioral analysis indicated more severe and persistent anxiogenic-like alterations in WARs submitted to acute seizures. Therefore, WARs presented pain hypersensitivity and increased anxiety-like behaviors endogenously associated with genetic epilepsy. Acute and chronic seizures induced postictal antinociception in response to mechanical and thermal stimuli and increased anxiety-like behaviors when assessed 1 day and 15 days later. These findings support the presence of neurobehavioral alterations in subjects with epilepsy and shed light on the use of genetic models to characterize neuropathological and behavioral alterations associated with epilepsy.


Asunto(s)
Epilepsia , Nocicepción , Ratas , Animales , Ratas Wistar , Convulsiones/complicaciones , Convulsiones/genética , Convulsiones/patología , Ansiedad/etiología , Dolor , Modelos Animales de Enfermedad
4.
Neuropharmacology ; 226: 109385, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603798

RESUMEN

Studies investigated how stressful experiences modulate physiological and behavioral responses and the consequences of stress-induced corticosterone release in anxiety-like behavior. Adolescence is crucial to brain maturation, and several neurobiological changes in this period lead individuals to increased susceptibility or resilience to aversive situations. Despite the effects of stress in adults, information about adolescents' responses to acute stress is lacking. We aimed to understand how adolescence affects acute stress responses. Male adolescent rats (30 days old) were 2 h restrained, and anxiety-like behaviors were measured immediately or 10 days after stress in the elevated plus-maze (EPM) and the light-dark box (LDB) tests. To verify the importance of CORT modulation in stress-induced anxiety, another group of rats was treated, 30 min before restraint, with metyrapone to blunt the stress-induced CORT peak and tested immediately after stress. To show that stress effects on behavior were age-dependent, another set of rats was tested in two different periods - early adolescence (30 days old) and mid-adolescence (40 days old) and were treated or not with metyrapone before the stress session and tested immediately or ten days later in the LDB test. Only early adolescent male rats were resilient to delayed anxiety-like behavior in EPM and LDB tests. Metyrapone treatment increased the rats' exploration immediately and ten days after stress. These data suggest a specific age at which adolescent rats are resilient to the delayed effects of acute restraint stress and that the metyrapone treatment has long-term behavioral consequences.


Asunto(s)
Glucocorticoides , Metirapona , Ratas , Animales , Masculino , Glucocorticoides/farmacología , Metirapona/farmacología , Ansiedad/inducido químicamente , Trastornos de Ansiedad , Corticosterona/farmacología , Estrés Psicológico/complicaciones , Conducta Animal
5.
J Neurosci Methods ; 384: 109748, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36410541

RESUMEN

BACKGROUND: Knowledge on the neurobiological systems underlying psychiatric disorders has considerably evolved due to findings on basic research using animal models. Anxiety-like behaviors in rodents are widely explored in neuroethological apparatuses, such as the light-dark box (LDB) test through different protocols, which have been shown to influence the behavioral outcomes and probably the activation of the hypothalamic-pituitary-adrenal (HPA) axis. NEW METHOD: Adult male Wistar rats were submitted to LDB in different room illumination conditions (25/0, 65/0 and/or 330/0 lux), initial positioning in the LDB compartments and previous stressful experience in the Elevated Plus Maze (EPM) or restraint stress (RS). Rats' behavior (exploratory and risk assessment) was registered during a 15 min period, divided into blocks of 5 min RESULTS: Exploration of the lit compartment decreased in higher luminosity condition, as after positioning rats in the dark compartment or previous exposure to the EPM, while low luminosity increased exploration of the LDB. No differences were observed on serum corticosterone in all groups and experimental conditions. COMPARISON WITH EXISTING METHODS: Light intensity and test duration influenced exploration of the LDB jeopardizing the anxiolytic/anxiogenic effects. Low light intensity increased exploration, while high intensity decreased it. These results suggest that 65/0 lux is a neutral condition to investigate possible anxiolytic/anxiogenic effects of drugs and/or exposure to previous aversive stimuli as the EPM. CONCLUSIONS: Different factors impact on exploratory and risk assessment behaviors which may be related to safety maximization behavior. Unraveling how different factors affect behavior may be a crucial step towards understanding its expression and the contributions on advances in the physiopathology 1 and treatment of psychiatric disorders.


Asunto(s)
Ansiolíticos , Ratas , Animales , Masculino , Ansiolíticos/farmacología , Ratas Wistar , Conducta Animal/fisiología , Ansiedad/tratamiento farmacológico , Corticosterona
6.
Pharmacol Rep ; 75(1): 166-176, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36195689

RESUMEN

BACKGROUND: Cannabidiol (CBD) has been of rapidly growing interest in the epilepsy research field due to its antiseizure properties in preclinical models and patients with pharmacoresistant epilepsy. However, little is known about CBD effects in genetic models of epilepsies. Here we assessed CBD dose-response effects in the Genetically Epilepsy Prone Rats (GEPR-3) strain, which exhibits two types of epileptic seizures, brainstem-dependent generalized tonic-clonic seizures and limbic seizures. METHODS: GEPR-3 s were submitted to the audiogenic seizure (AGS) protocol. Acute AGS are brainstem-dependent generalized tonic-clonic, while repeated AGS (or audiogenic kindling, AK), an epileptogenic process, leads to increased AGS severity and limbic seizure expression. Therefore, two different dose-response studies were performed, one for generalized tonic-clonic seizures and the other for limbic seizures. CBD time-course effects were assessed 2, 4, and 6 h after drug injection. GEPR-3 s were submitted to within-subject tests, receiving intraperitoneal injections of CBD (1, 10, 50, 100 mg/kg/ml) and vehicle. RESULTS: CBD dose-dependently attenuated generalized tonic-clonic seizures in GEPR-3 s; CBD 50 and 100 mg/kg reduced brainstem-dependent seizure severity and duration. In fully kindled GEPR-3 s, CBD 10 mg/kg reduced limbic seizure severity and suppressed limbic seizure expression in 75% of animals. CONCLUSIONS: CBD was effective against brainstem and limbic seizures in the GEPR-3 s. These results support the use of CBD treatment for epilepsies by adding new information about the pharmacological efficacy of CBD in suppressing inherited seizure susceptibility in the GEPR-3 s.


Asunto(s)
Cannabidiol , Epilepsia Refleja , Excitación Neurológica , Ratas , Animales , Cannabidiol/farmacología , Convulsiones/tratamiento farmacológico , Excitación Neurológica/fisiología , Epilepsia Refleja/tratamiento farmacológico , Epilepsia Refleja/genética , Tronco Encefálico , Niacinamida/farmacología , Estimulación Acústica , Modelos Animales de Enfermedad
8.
Neurosci Biobehav Rev ; 137: 104675, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35460705

RESUMEN

Currently, there is an urgent need to better comprehend neuroplastic alterations in cannabinoid receptors type 1 (CB1) and to understand the biological meaning of these alterations in epileptic disorders. The present study reviewed neuroplastic changes in CB1 distribution, expression, and functionality in animal models of epileptic seizures. Neuroplastic alterations in CB1 were consistently observed in chemical, genetic, electrical, and febrile seizure models. Most studies assessed changes in hippocampal and cortical CB1, while thalamic, hypothalamic, and brainstem nuclei were rarely investigated. Additionally, the relationship between CB1 alteration and the control of brain excitability through modulation of specific neuronal networks, such as striatonigral, nigrotectal and thalamocortical pathways, and inhibitory projections to hippocampal pyramidal neurons, were all presented and discussed in the present review. Neuroplastic alterations in CB1 detected in animal models of epilepsy may reflect two different scenarios: (1) endogenous adaptations aimed to control neuronal hyperexcitability in epilepsy or (2) pathological alterations that facilitate neuronal hyperexcitability. Additionally, a better comprehension of neuroplastic and functional alterations in CB1 can improve pharmacological therapies for epilepsies and their comorbidities.


Asunto(s)
Epilepsia , Animales , Modelos Animales de Enfermedad , Hipocampo , Humanos , Modelos Animales , Receptor Cannabinoide CB1/metabolismo , Receptores de Cannabinoides/metabolismo , Convulsiones/metabolismo
9.
Biomedicines ; 10(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203625

RESUMEN

Epilepsies are neurological disorders characterized by chronic seizures and their related neuropsychiatric comorbidities, such as anxiety. The Transient Receptor Potential Vanilloid type-1 (TRPV1) channel has been implicated in the modulation of seizures and anxiety-like behaviors in preclinical models. Here, we investigated the impact of chronic epileptic seizures in anxiety-like behavior and TRPV1 channels expression in a genetic model of epilepsy, the Wistar Audiogenic Rat (WAR) strain. WARs were submitted to audiogenic kindling (AK), a preclinical model of temporal lobe epilepsy (TLE) and behavioral tests were performed in the open-field (OF), and light-dark box (LDB) tests 24 h after AK. WARs displayed increased anxiety-like behavior and TRPV1R expression in the hippocampal CA1 area and basolateral amygdala nucleus (BLA) when compared to control Wistar rats. Chronic seizures increased anxiety-like behaviors and TRPV1 and FosB expression in limbic and brainstem structures involved with epilepsy and anxiety comorbidity, such as the hippocampus, superior colliculus, and periaqueductal gray matter. Therefore, these results highlight previously unrecognized alterations in TRPV1 expression in brain structures involved with TLE and anxiogenic-like behaviors in a genetic model of epilepsy, the WAR strain, supporting an important role of TRPV1 in the modulation of neurological disorders and associated neuropsychiatric comorbidities.

10.
Neuropharmacology ; 197: 108712, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274349

RESUMEN

The incidence of chronic pain is high in the general population and it is closely related to anxiety disorders, which promote negative effects on the quality of life. The cannabinoid system has essential participation in the pain sensitivity circuit. In this perspective, cannabidiol (CBD) is considered a promising strategy for treating neuropathic pain. Our study aimed to evaluate the effects of sub-chronic systemic treatment with CBD (0.3, 3, 10, or 30 mg/kg, i.p.) in male in rats submitted to chronic constriction injury of the sciatic nerve (CCI) or not (SHAM) and assessed in nociceptive tests (von Frey, acetone, and hot plate, three days CBD's treatment) and in the open field test (OFT, two days CBD's treatment). We performed a screening immunoreactivity of CB1 and TRPV1 receptors in cortical and limbic regions tissues, which were collected after 1.5 h of behavioral tests on the 24th experimental day. This study presents a dose-response curve to understand better the effects of low doses (3 mg/kg) on CBD's antiallodynic and anxiolytic effects. Also, low doses of CBD were able to (1) reverse mechanical and thermal allodynia (cold) and hyperalgesia, (2) reverse anxious behaviors (reduction of the % of grooming and freezing time, and increase of the % of center time in the OFT) induced by chronic pain. The peripheral neuropathy promoted the increase in the expression of CB1 and TRPV1 receptors in the anterior cingulate cortex (ACC), anterior insular cortex (AIC), basolateral amygdala (BLA), dorsal hippocampus (DH), and ventral hippocampus (VH). CBD potentiated this effect in the ACC, AIC, BLA, DH, and VH regions. These results provide substantial evidence of the role of the ACC-AIC-BLA corticolimbic circuit, and BLA-VH for pain regulation. These results can be clinically relevant since they contribute to the evidence of CBD's beneficial effects on treating chronic pain and associated comorbidities such as anxiety.


Asunto(s)
Ansiedad/tratamiento farmacológico , Cannabidiol/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Neuralgia/tratamiento farmacológico , Receptor Cannabinoide CB1/efectos de los fármacos , Canales Catiónicos TRPV/efectos de los fármacos , Animales , Ansiedad/psicología , Corteza Cerebral/metabolismo , Hipocampo/metabolismo , Calor , Sistema Límbico/efectos de los fármacos , Masculino , Red Nerviosa/efectos de los fármacos , Neuralgia/metabolismo , Neuralgia/psicología , Dimensión del Dolor/efectos de los fármacos , Estimulación Física , Ratas , Ratas Wistar , Ciática/tratamiento farmacológico
11.
Epilepsy Res ; 176: 106693, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34225231

RESUMEN

The WAG/Rij strain of rats is commonly used as a preclinical model of genetic absence epilepsy. While widely utilized, the developmental trajectory of absence seizure expression has been only partially described. Moreover, sex differences in this strain have been under-explored. Here, we longitudinally monitored male and female WAG/Rij rats to quantify cortical spike-and-wave discharges (SWDs) monthly, from 4 to 10 months of age. In both male and female WAG/Rij rats, absence seizure susceptibility increased with age. In contrast to previous reports, we found a robust and consistent increase in absence epilepsy susceptibility in male WAG/Rij rats in comparison to females across months. The increased absence seizure susceptibility was characterized by increased number and duration of SWDs, and consequently increased total SWDs duration. These findings highlight a previously un-recognized sex difference in a model of absence epilepsy and narrow the knowledge gap of age-dependent expression of SWDs in the WAG/Rij strain.


Asunto(s)
Epilepsia Tipo Ausencia , Animales , Modelos Animales de Enfermedad , Electroencefalografía , Epilepsia Tipo Ausencia/genética , Femenino , Masculino , Ratas , Ratas Wistar , Convulsiones/genética
12.
Epilepsy Behav ; 119: 107962, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887676

RESUMEN

Cannabidiol (CBD) is a marijuana compound implicated in epilepsy treatment in animal models and pharmacoresistant patients. However, little is known about chronic CBD administration's effects in chronic models of seizures, especially regarding its potential antiepileptogenic effects. In the present study, we combined a genetic model of epilepsy (the Wistar Audiogenic Rat strain - WARs), a chronic protocol of seizures (the audiogenic kindling - AuK), quantitative and sequential behavioral analysis (neuroethology), and microscopy imaging to analyze the effects of chronic CBD administration in a genetic model of epilepsy. The acute audiogenic seizure is characterized by tonic-clonic seizures and intense brainstem activity. However, during the AuK WARs can develop limbic seizures associated with the recruitment of forebrain and limbic structures. Here, chronic CBD administration, twice a day, attenuated brainstem, tonic-clonic seizures, prevented limbic recruitment, and suppressed limbic (kindled) seizures, suggesting CBD antiepileptogenic effects. Additionally, CBD prevented chronic neuronal hyperactivity, suppressing FosB immunostaining in the brainstem (inferior colliculus and periaqueductal gray matter) and forebrain (basolateral amygdala nucleus and piriform cortex), structures associated with tonic-clonic and limbic seizures, respectively. Chronic seizures increased cannabinoid receptors type 1 (CB1R) immunostaining in the hippocampus and the BLA, while CBD administration prevented changes in CB1R expression induced by the AuK. The neuroethological analysis provided details about CBD's protective effects against brainstem and limbic seizures associated with FosB expression. Our results strongly suggest chronic CBD anticonvulsant and antiepileptogenic effects associated with reduced chronic neuronal activity and modulation of CB1R expression. We also support the chronic use of CBD for epilepsies treatments.


Asunto(s)
Anticonvulsivantes , Cannabidiol , Estimulación Acústica , Animales , Anticonvulsivantes/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Modelos Genéticos , Ratas , Ratas Wistar
13.
Front Behav Neurosci ; 15: 611902, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33643007

RESUMEN

Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.

14.
J Psychopharmacol ; 34(8): 901-913, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32638619

RESUMEN

BACKGROUND: Exposure to stressful aversive situations induces physiological and behavioral changes. Serotonin has been suggested to mediate such changes, as well as adaptation to stressful events. Serotoninergic projections arising from the median raphe nucleus to the dorsal hippocampus have been suggested to promote adaptation to chronic aversive stimuli. Such pathway may involve serotonin type 1a receptor-mediated neurotransmission. However, the serotonin 7 receptor can also be found in the median raphe nucleus and may be involved in mechanisms underlying response to stress. AIMS: In this work we sought to investigate if activation of serotonin type 7 receptors would attenuate stress-induced deficits in different animal models of depression. METHODS: Male Wistar rats with a guide-cannula aimed to the median raphe nucleus were submitted to restraint or forced swim stress and were tested in an elevated plus maze or forced swim test, respectively, 24 h later. SB 258741 (serotonin type 7 receptor antagonist) and/or LP 44 (serotonin type 7 receptor agonist) were administered intra-median raphe nucleus immediately before or after exposure to stress or before test. Control groups received intra-median raphe nucleus treatment 24 h or immediately before test in the elevated plus maze or forced swim test. RESULTS: LP 44 attenuated restraint-induced exploratory deficits independently of the moment it was administered. Similar results were observed in the forced swim test, with the exception on post-stress condition. These effects on adaptation to stress induced by serotonin type 7 receptor activation were prevented by previous treatment with SB 258741. CONCLUSIONS: Our data support the idea that activation of median raphe nucleus serotonin 7 receptor is important to the development of adaptation to stress.


Asunto(s)
Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Núcleos del Rafe/efectos de los fármacos , Receptores de Serotonina/efectos de los fármacos , Antagonistas de la Serotonina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Estrés Psicológico/tratamiento farmacológico , Animales , Conducta Animal/fisiología , Depresión/fisiopatología , Masculino , Ratas , Ratas Wistar , Antagonistas de la Serotonina/administración & dosificación , Agonistas de Receptores de Serotonina/administración & dosificación , Estrés Psicológico/fisiopatología
15.
Neurosci Biobehav Rev ; 111: 166-182, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31954723

RESUMEN

Epilepsy is a neurological disorder characterized by the presence of seizures and neuropsychiatric comorbidities. Despite the number of antiepileptic drugs, one-third of patients did not have their seizures under control, leading to pharmacoresistance epilepsy. Cannabis sativa has been used since ancient times in Medicine for the treatment of many diseases, including convulsive seizures. In this context, Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been a promising compound for treating epilepsies due to its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. In this review, we summarize evidence of the CBD anticonvulsant activities present in a great diversity of animal models. Special attention was given to behavioral CBD effects and its translation to human epilepsies. CBD anticonvulsant effects are associated with a great variety of mechanisms of action such as endocannabinoid and calcium signaling. CBD has shown effectiveness in the clinical scenario for epilepsies, but its effects on epilepsy-related comorbidities are scarce even in basic research. More detailed and complex behavioral evaluation about CBD effects on seizures and epilepsy-related comorbidities are required.


Asunto(s)
Anticonvulsivantes/farmacología , Cannabidiol/farmacología , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Animales , Convulsiones/inducido químicamente
16.
Front Behav Neurosci ; 14: 602258, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33408620

RESUMEN

The endocannabinoid system (ECS) is related to several physiological processes, associated to the modulation of brain excitability, with impact in the expression of susceptibility and control of epileptic seizures. The cannabinoid receptor type 1 (CB1R) is widely expressed in the brain, especially in forebrain limbic structures. Changes in CB1R expression are associated with epileptic seizures in animal models and humans. The Wistar Audiogenic Rat (WAR) strain is a genetic model of epilepsy capable of mimicking tonic-clonic and limbic seizures in response to intense sound stimulation. The WAR strain presents several behavioral and physiological alterations associated with seizure susceptibility, but the ECS has never been explored in this strain. Therefore, the aim of the present study was to characterize CB1R expression in forebrain limbic structures important to limbic seizure expression in WARs. We used a detailed anatomical analysis to assess the effects of acute and chronic audiogenic seizures on CB1R expression in several layers and regions of hippocampus and amygdala. WARs showed increased CB1R immunostaining in the inner molecular layer of the hippocampus, when compared to control Wistar rats. Acute and chronic audiogenic seizures increased CB1R immunostaining in several regions of the dorsal hippocampus and amygdala of WARs. Also, changes in CB1R expression in the amygdala, but not in the hippocampus, were associated with limbic recruitment and limbic seizure severity in WARs. Our results suggest that endogenous alterations in CB1R immunostaining in WARs could be associated with genetic susceptibility to audiogenic seizures. We also demonstrated CB1R neuroplastic changes associated with acute and chronic seizures in the amygdala and hippocampus. Moreover, the present study brings important information regarding CB1R and seizure susceptibility in a genetic model of seizures and supports the relationship between ECS and epilepsy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...