Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 13(6)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38929094

RESUMEN

Pseudomonas aeruginosa (PA) is an opportunistic pathogen frequently isolated from cutaneous chronic wounds. How PA, in the presence of oxidative stress (OS), colonizes chronic wounds and forms a biofilm is still unknown. The purpose of this study is to investigate the changes in gene expression seen when PA is challenged with the high levels of OS present in chronic wounds. We used a biofilm-forming PA strain isolated from the chronic wounds of our murine model (RPA) and performed a qPCR to obtain gene expression patterns as RPA developed a biofilm in vitro in the presence of high levels of OS, and then compared the findings in vivo, in our mouse model of chronic wounds. We found that the planktonic bacteria under OS conditions overexpressed quorum sensing genes that are important for the bacteria to communicate with each other, antioxidant stress genes important to reduce OS in the microenvironment for survival, biofilm formation genes and virulence genes. Additionally, we performed RNAseq in vivo and identified the activation of novel genes/pathways of the Type VI Secretion System (T6SS) involved in RPA pathogenicity. In conclusion, RPA appears to survive the high OS microenvironment in chronic wounds and colonizes these wounds by turning on virulence, biofilm-forming and survival genes. These findings reveal pathways that may be promising targets for new therapies aimed at disrupting PA-containing biofilms immediately after debridement to facilitate the treatment of chronic human wounds.

2.
Endocrinology ; 165(3)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38146776

RESUMEN

Obesity is a chronic disease with increasing prevalence worldwide. Obesity leads to an increased risk of heart disease, stroke, and diabetes, as well as endocrine alterations, reproductive disorders, changes in basal metabolism, and stress hormone production, all of which are regulated by the pituitary. In this study, we performed single-cell RNA sequencing of pituitary glands from male mice fed control and high-fat diet (HFD) to determine obesity-mediated changes in pituitary cell populations and gene expression. We determined that HFD exposure is associated with dramatic changes in somatotrope and lactotrope populations, by increasing the proportion of somatotropes and decreasing the proportion of lactotropes. Fractions of other hormone-producing cell populations remained unaffected. Gene expression changes demonstrated that in HFD, somatotropes became more metabolically active, with increased expression of genes associated with cellular respiration, and downregulation of genes and pathways associated with cholesterol biosynthesis. Despite a lack of changes in gonadotrope fraction, genes important in the regulation of gonadotropin hormone production were significantly downregulated. Corticotropes and thyrotropes were the least affected in HFD, while melanotropes exhibited reduced proportion. Lastly, we determined that changes in plasticity and gene expression were associated with changes in hormone levels. Serum prolactin was decreased corresponding to reduced lactotrope fraction, while lower luteinizing hormone and follicle-stimulating hormone in the serum corresponded to a decrease in transcription and translation. Taken together, our study highlights diet-mediated changes in pituitary gland populations and gene expression that play a role in altered hormone levels in obesity.


Asunto(s)
Adenohipófisis , Ratones , Masculino , Animales , Adenohipófisis/metabolismo , Prolactina/metabolismo , Hipófisis/metabolismo , Hormona Folículo Estimulante/metabolismo , Perfilación de la Expresión Génica , Obesidad/genética , Obesidad/metabolismo , Dieta
3.
Nucleic Acids Res ; 51(13): e73, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37293974

RESUMEN

Mitochondrial DNA (mtDNA) modifications play an emerging role in innate immunity and inflammatory diseases. Nonetheless, relatively little is known regarding the locations of mtDNA modifications. Such information is critically important for deciphering their roles in mtDNA instability, mtDNA-mediated immune and inflammatory responses, and mitochondrial disorders. The affinity probe-based enrichment of lesion-containing DNA represents a key strategy for sequencing DNA modifications. Existing methods are limited in the enrichment specificity of abasic (AP) sites, a prevalent DNA modification and repair intermediate. Herein, we devise a novel approach, termed dual chemical labeling-assisted sequencing (DCL-seq), for mapping AP sites. DCL-seq features two designer compounds for enriching and mapping AP sites specifically at single-nucleotide resolution. For proof of principle, we mapped AP sites in mtDNA from HeLa cells under different biological conditions. The resulting AP site maps coincide with mtDNA regions with low TFAM (mitochondrial transcription factor A) coverage and with potential G-quadruplex-forming sequences. In addition, we demonstrated the broader applicability of the method in sequencing other DNA modifications in mtDNA, such as N7-methyl-2'-deoxyguanosine and N3-methyl-2'-deoxyadenosine, when coupled with a lesion-specific repair enzyme. Together, DCL-seq holds the promise to sequence multiple DNA modifications in various biological samples.


Asunto(s)
ADN Mitocondrial , Humanos , Alquilación , Daño del ADN , Reparación del ADN , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Células HeLa , Nucleótidos , Análisis de Secuencia de ADN
4.
Nat Commun ; 13(1): 7440, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36460634

RESUMEN

Light initiates chloroplast biogenesis in Arabidopsis by eliminating PHYTOCHROME-INTERACTING transcription FACTORs (PIFs), which in turn de-represses nuclear photosynthesis genes, and synchronously, generates a nucleus-to-plastid (anterograde) signal that activates the plastid-encoded bacterial-type RNA polymerase (PEP) to transcribe plastid photosynthesis genes. However, the identity of the anterograde signal remains frustratingly elusive. The main challenge has been the difficulty to distinguish regulators from the plethora of necessary components for plastid transcription and other essential chloroplast functions, such as photosynthesis. Here, we show that the genome-wide induction of nuclear photosynthesis genes is insufficient to activate the PEP. PEP inhibition is imposed redundantly by multiple PIFs and requires PIF3's activator activity. Among the nuclear-encoded components of the PEP holoenzyme, we identify four light-inducible, PIF-repressed sigma factors as anterograde signals. Together, our results elucidate that light-dependent inhibition of PIFs activates plastid photosynthesis genes via sigma factors as anterograde signals in parallel with the induction of nuclear photosynthesis genes.


Asunto(s)
Arabidopsis , Factor sigma , Factor sigma/genética , Fotosíntesis/genética , Transcripción Genética , Núcleo Celular/genética , Plastidios/genética , Arabidopsis/genética , ARN Bacteriano
5.
Sci Adv ; 8(47): eadc9454, 2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36427317

RESUMEN

In plants, RNA-directed DNA methylation (RdDM) uses small interfering RNAs (siRNAs) to target transposable elements (TEs) but usually avoids genes. RNA polymerase IV (Pol IV) shapes the landscape of DNA methylation through its pivotal role in siRNA biogenesis. However, how Pol IV is recruited to specific loci, particularly how it avoids genes, is poorly understood. Here, we identified a Pol IV-interacting protein, ZMP (zinc finger, mouse double-minute/switching complex B, Plus-3 protein), which exerts a dual role in regulating siRNA biogenesis and DNA methylation at specific genomic regions. ZMP is required for siRNA biogenesis at some pericentromeric regions and prevents Pol IV from targeting a subset of TEs and genes at euchromatic loci. As a chromatin-associated protein, ZMP prefers regions with depleted histone H3 lysine 4 (H3K4) methylation abutted by regions with H3K4 methylation, probably monitoring changes in local H3K4 methylation status to regulate Pol IV's chromatin occupancy. Our findings uncover a mechanism governing the specificity of RdDM.

6.
Mol Plant Pathol ; 23(10): 1565-1574, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869407

RESUMEN

Gene silencing mediated by small noncoding RNAs (sRNAs) is a fundamental gene regulation mechanism in eukaryotes that broadly governs cellular processes. It has been established that sRNAs are critical regulators of plant growth, development, and antiviral defence, while accumulating studies support positive roles of sRNAs in plant defence against bacteria and eukaryotic pathogens such as fungi and oomycetes. Emerging evidence suggests that plant sRNAs move between species and function as antimicrobial agents against nonviral parasites. Multiple plant pathosystems have been shown to involve a similar exchange of small RNAs between species. Recent analysis about extracellular sRNAs shed light on the understanding of the selection and transportation of sRNAs moving from plant to parasites. In this review, we summarize current advances regarding the function and regulatory mechanism of plant endogenous small interfering RNAs (siRNAs) in mediating plant defence against pathogen intruders including viruses, bacteria, fungi, oomycetes, and parasitic plants. Beyond that, we propose potential mechanisms behind the sorting of sRNAs moving between species and the idea that engineering siRNA-producing loci could be a useful strategy to improve disease resistance of crops.


Asunto(s)
Enfermedades de las Plantas , ARN Pequeño no Traducido , Bacterias , Hongos/genética , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Plantas/microbiología , ARN de Planta/genética , ARN Interferente Pequeño/genética
7.
Insect Sci ; 29(5): 1318-1328, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35068058

RESUMEN

Transcriptomic studies are an important tool for understanding the molecular pathways underlying host plant use by agricultural pests, including vectors of damaging plant pathogens. Thus far, bulk RNA-Seq has been the main approach for non-model insects. This method relies on pooling large numbers of whole organisms or hundreds of individually dissected organs. The latter approach is logistically challenging, may introduce artifacts of handling and storage, and is not compatible with biological replication. Here, we tested an approach to generate transcriptomes of individual salivary glands and other low-input body tissues from whiteflies (Bemisia tabaci MEAM1), which are major vectors of plant viruses. By comparing our outputs to published bulk RNA-Seq datasets for whole whitefly bodies and pools of salivary glands, we demonstrate that this approach recovers similar numbers of transcripts relative to bulk RNA-Seq in a tissue-specific manner, and for some metrics, exceeds performance of bulk tissue RNA-Seq. Libraries generated from individual salivary glands also yielded additional novel transcripts not identified in pooled salivary gland datasets, and had hundreds of enriched transcripts when compared with whole head tissues. Overall, our study demonstrates that it is feasible to produce high quality, replicated transcriptomes of whitefly salivary glands and other low-input tissues. We anticipate that our approach will expand hypothesis-driven research on salivary glands of whiteflies and other Hemiptera, thus enabling novel control strategies to disrupt feeding and virus transmission.


Asunto(s)
Hemípteros , Virus de Plantas , Animales , Hemípteros/metabolismo , Plantas , RNA-Seq , Glándulas Salivales/metabolismo , Transcriptoma
8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536344

RESUMEN

An important question is what genes govern the differentiation of plant embryos into suspensor and embryo proper regions following fertilization and division of the zygote. We compared embryo proper and suspensor transcriptomes of four plants that vary in embryo morphology within the suspensor region. We determined that genes encoding enzymes in several metabolic pathways leading to the formation of hormones, such as gibberellic acid, and other metabolites are up-regulated in giant scarlet runner bean and common bean suspensors. Genes involved in transport and Golgi body organization are up-regulated within the suspensors of these plants as well, strengthening the view that giant specialized suspensors serve as a hormone factory and a conduit for transferring substances to the developing embryo proper. By contrast, genes controlling transcriptional regulation, development, and cell division are up-regulated primarily within the embryo proper. Transcriptomes from less specialized soybean and Arabidopsis suspensors demonstrated that fewer genes encoding metabolic enzymes and hormones are up-regulated. Genes active in the embryo proper, however, are functionally similar to those active in scarlet runner bean and common bean embryo proper regions. We uncovered a set of suspensor- and embryo proper-specific transcription factors (TFs) that are shared by all embryos irrespective of morphology, suggesting that they are involved in early differentiation processes common to all plants. Chromatin immunoprecipitation sequencing (ChIP-Seq) experiments with scarlet runner bean and soybean WOX9, an up-regulated suspensor TF, gained entry into a regulatory network important for suspensor development irrespective of morphology.


Asunto(s)
Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Semillas/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , División Celular/genética , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Semillas/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo
10.
Dev Cell ; 55(5): 603-616.e5, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33232670

RESUMEN

Axillary meristems (AMs) give rise to lateral shoots and are critical to plant architecture. Understanding how developmental cues and environmental signals impact AM development will enable the improvement of plant architecture in agriculture. Here, we show that ARGONAUTE10 (AGO10), which sequesters miR165/166, promotes AM development through the miR165/166 target gene REVOLUTA. We reveal that AGO10 expression is precisely controlled temporally and spatially by auxin, brassinosteroids, and light to result in AM initiation only in the axils of leaves at a certain age. AUXIN RESPONSE FACTOR 5 (ARF5) activates while BRASSINAZOLE-RESISTANT 1 (BZR1) and PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) repress AGO10 transcription directly. In axils of young leaves, BZR1 and PIF4 repress AGO10 expression to prevent AM initiation. In axils of older leaves, ARF5 upregulates AGO10 expression to promote AM initiation. Our results uncover the spatiotemporal control of AM development through the cooperation of hormones and light converging on a regulator of microRNA.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas Argonautas/genética , Regulación de la Expresión Génica de las Plantas , Meristema/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Brasinoesteroides/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ácidos Indolacéticos/metabolismo , Fototransducción , Meristema/genética , Mutación/genética , Hojas de la Planta/metabolismo , Factores de Tiempo , Transcripción Genética
11.
Bio Protoc ; 10(14): e3680, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659351

RESUMEN

Steady-state mRNA levels are determined by both the rates of transcription and degradation. Regulation of mRNA stability and/or degradation are key factors that can significantly affect mRNA levels and its biological functions. mRNA stability can be measured indirectly after transcription inhibition. This protocol described a rapid and sensitive method of mRNA stability measurement through quantitative reverse transcription PCR (RT-qPCR) after inhibition of RNA transcription by cordycepin in Arabidopsis seedlings.

12.
Proc Natl Acad Sci U S A ; 114(45): E9730-E9739, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29078418

RESUMEN

We profiled soybean and Arabidopsis methylomes from the globular stage through dormancy and germination to understand the role of methylation in seed formation. CHH methylation increases significantly during development throughout the entire seed, targets primarily transposable elements (TEs), is maintained during endoreduplication, and drops precipitously within the germinating seedling. By contrast, no significant global changes in CG- and CHG-context methylation occur during the same developmental period. An Arabidopsis ddcc mutant lacking CHH and CHG methylation does not affect seed development, germination, or major patterns of gene expression, implying that CHH and CHG methylation does not play a significant role in seed development or in regulating seed gene activity. By contrast, over 100 TEs are transcriptionally de-repressed in ddcc seeds, suggesting that the increase in CHH-context methylation may be a failsafe mechanism to reinforce transposon silencing. Many genes encoding important classes of seed proteins, such as storage proteins, oil biosynthesis enzymes, and transcription factors, reside in genomic regions devoid of methylation at any stage of seed development. Many other genes in these classes have similar methylation patterns, whether the genes are active or repressed. Our results suggest that methylation does not play a significant role in regulating large numbers of genes important for programming seed development in both soybean and Arabidopsis. We conclude that understanding the mechanisms controlling seed development will require determining how cis-regulatory elements and their cognate transcription factors are organized in genetic regulatory networks.


Asunto(s)
Arabidopsis/genética , Metilación de ADN/fisiología , ADN de Plantas/metabolismo , Glycine max/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Secuencia de Bases , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Elementos Transponibles de ADN/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Redes Reguladoras de Genes , Silenciador del Gen , Genes de Plantas/genética , Genoma de Planta/genética , Germinación/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Plantones/genética , Plantones/metabolismo , Semillas/citología
13.
Proc Natl Acad Sci U S A ; 114(32): E6710-E6719, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739919

RESUMEN

LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and lec1-null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the lec1 mutation. We used ChIP and differential gene-expression analyses in Arabidopsis seedlings overexpressing LEC1 and in developing Arabidopsis and soybean seeds to identify globally the target genes that are transcriptionally regulated by LEC1 in planta Collectively, our results show that LEC1 controls distinct gene sets at different developmental stages, including those that mediate the temporal transition between photosynthesis and chloroplast biogenesis early in seed development and seed maturation late in development. Analyses of enriched DNA sequence motifs that may act as cis-regulatory elements in the promoters of LEC1 target genes suggest that LEC1 may interact with other transcription factors to regulate distinct gene sets at different stages of seed development. Moreover, our results demonstrate strong conservation in the developmental processes and gene networks regulated by LEC1 in two dicotyledonous plants that diverged ∼92 Mya.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Glycine max/metabolismo , Semillas/metabolismo , Transcripción Genética/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , ADN de Plantas/genética , ADN de Plantas/metabolismo , Motivos de Nucleótidos/fisiología , Semillas/genética , Glycine max/genética
14.
PLoS Biol ; 15(2): e2001272, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28231321

RESUMEN

The degradation of small RNAs in plants and animals is associated with small RNA 3' truncation and 3' uridylation and thus relies on exonucleases and nucleotidyl transferases. ARGONAUTE (AGO) proteins associate with small RNAs in vivo and are essential for not only the activities but also the stability of small RNAs. AGO1 is the microRNA (miRNA) effector in Arabidopsis, and its closest homolog, AGO10, maintains stem cell homeostasis in meristems by sequestration of miR165/6, a conserved miRNA acting through AGO1. Here, we show that SMALL RNA DEGRADING NUCLEASES (SDNs) initiate miRNA degradation by acting on AGO1-bound miRNAs to cause their 3' truncation, and the truncated species are uridylated and degraded. We report that AGO10 reduces miR165/6 accumulation by enhancing its degradation by SDN1 and SDN2 in vivo. In vitro, AGO10-bound miR165/6 is more susceptible to SDN1-mediated 3' truncation than AGO1-bound miR165/6. Thus, AGO10 promotes the degradation of miR165/6, which is contrary to the stabilizing effect of AGO1. Our work identifies a class of exonucleases responsible for miRNA 3' truncation in vivo and uncovers a mechanism of specificity determination in miRNA turnover. This work, together with previous studies on AGO10, suggests that spatially regulated miRNA degradation underlies stem cell maintenance in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Argonautas/metabolismo , Exorribonucleasas/metabolismo , MicroARNs/metabolismo , Estabilidad del ARN , Regulación de la Expresión Génica de las Plantas , Metilación , MicroARNs/genética , Mutación/genética , Plantas Modificadas Genéticamente , Unión Proteica , Complejo Silenciador Inducido por ARN/metabolismo
15.
Plant Physiol ; 168(3): 1025-35, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25963149

RESUMEN

We used an RNA interference screen to assay the function of 53 transcription factor messenger RNAs (mRNAs) that accumulate specifically within soybean (Glycine max) seed regions, subregions, and tissues during development. We show that basic helix-loop-helix (bHLH) transcription factor genes represented by Glyma04g41710 and its paralogs are required for the formation of stoma in leaves and stomatal precursor complexes in mature embryo cotyledons. Phylogenetic analysis indicates that these bHLH transcription factor genes are orthologous to Arabidopsis (Arabidopsis thaliana) SPEECHLESS (SPCH) that initiate asymmetric cell divisions in the leaf protoderm layer and establish stomatal cell lineages. Soybean SPCH (GmSPCH) mRNAs accumulate primarily in embryo, seedling, and leaf epidermal layers. Expression of Glyma04g41710 under the control of the SPCH promoter rescues the Arabidopsis spch mutant, indicating that Glyma04g41710 is a functional ortholog of SPCH. Developing soybean embryos do not form mature stoma, and stomatal differentiation is arrested at the guard mother cell stage. We analyzed the accumulation of GmSPCH mRNAs during soybean seed development and mRNAs orthologous to MUTE, FAMA, and inducer of C-repeat/dehydration responsive element-binding factor expression1/scream2 that are required for stoma formation in Arabidopsis. The mRNA accumulation patterns provide a potential explanation for guard mother cell dormancy in soybean embryos. Our results suggest that variation in the timing of bHLH transcription factor gene expression can explain the diversity of stomatal forms observed during plant development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula/genética , Regulación hacia Abajo/genética , Genes de Plantas , Glycine max/embriología , Glycine max/genética , Estomas de Plantas/citología , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Homocigoto , Desarrollo de la Planta/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estomas de Plantas/embriología , Estomas de Plantas/genética , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Semillas/embriología , Semillas/genética
16.
Proc Natl Acad Sci U S A ; 110(5): E435-44, 2013 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-23319655

RESUMEN

Seeds are complex structures that consist of the embryo, endosperm, and seed-coat regions that are of different ontogenetic origins, and each region can be further divided into morphologically distinct subregions. Despite the importance of seeds for food, fiber, and fuel globally, little is known of the cellular processes that characterize each subregion or how these processes are integrated to permit the coordinated development of the seed. We profiled gene activity genome-wide in every organ, tissue, and cell type of Arabidopsis seeds from fertilization through maturity. The resulting mRNA datasets offer the most comprehensive description of gene activity in seeds with high spatial and temporal resolution,providing unique insights into the function of understudied seed regions. Global comparisons of mRNA populations reveal unexpected overlaps in the functional identities of seed subregions. Analyses of coexpressed gene sets suggest that processes that regulate seed size and filling are coordinated across several subregions. Predictions of gene regulatory networks based on the association of transcription factors with enriched DNA sequence motifs upstream of coexpressed genes identify regulators of seed development. These studies emphasize the utility of these data sets as an essential resource for the study of seed biology.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Arabidopsis/anatomía & histología , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/clasificación , Análisis por Conglomerados , Endospermo/anatomía & histología , Endospermo/genética , Endospermo/crecimiento & desarrollo , Genes de Plantas/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo
17.
Plant Physiol ; 157(4): 1975-86, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21963820

RESUMEN

Microbe-associated molecular pattern-triggered immunity (MTI) is an important component of the plant innate immunity response to invading pathogens. However, most of our knowledge of MTI comes from studies of model systems with relatively little work done with crop plants. In this work, we report on variation in both the microbe-associated molecular pattern-triggered oxidative burst and gene expression across four soybean (Glycine max) genotypes. Variation in MTI correlated with the level of pathogen resistance for each genotype. A quantitative trait locus analysis on these traits identified four loci that appeared to regulate gene expression during MTI in soybean. Likewise, we observed that both MTI variation and pathogen resistance were quantitatively inherited. The approach utilized in this study may have utility for identifying key resistance loci useful for developing improved soybean cultivars.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Glycine max/genética , Glycine max/inmunología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Sitios de Carácter Cuantitativo/inmunología , Ascomicetos/patogenicidad , Perfilación de la Expresión Génica , Genotipo , Interacciones Huésped-Patógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Pseudomonas syringae/patogenicidad , ARN de Planta/genética , Receptores de Reconocimiento de Patrones/metabolismo , Estallido Respiratorio , Glycine max/microbiología
18.
Proc Natl Acad Sci U S A ; 107(18): 8063-70, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20385809

RESUMEN

Most of the transcription factors (TFs) responsible for controlling seed development are not yet known. To identify TF genes expressed at specific stages of seed development, including those unique to seeds, we used Affymetrix GeneChips to profile Arabidopsis genes active in seeds from fertilization through maturation and at other times of the plant life cycle. Seed gene sets were compared with those expressed in prefertilization ovules, germinating seedlings, and leaves, roots, stems, and floral buds of the mature plant. Most genes active in seeds are shared by all stages of seed development, although significant quantitative changes in gene activity occur. Each stage of seed development has a small gene set that is either specific at the level of the GeneChip or up-regulated with respect to genes active at other stages, including those that encode TFs. We identified 289 seed-specific genes, including 48 that encode TFs. Seven of the seed-specific TF genes are known regulators of seed development and include the LEAFY COTYLEDON (LEC) genes LEC1, LEC1-LIKE, LEC2, and FUS3. The rest represent different classes of TFs with unknown roles in seed development. Promoter-beta-glucuronidase (GUS) fusion experiments and seed mRNA localization GeneChip datasets showed that the seed-specific TF genes are active in different compartments and tissues of the seed at unique times of development. Collectively, these seed-specific TF genes should facilitate the identification of regulatory networks that are important for programming seed development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Mensajero/genética , Semillas/genética , Semillas/crecimiento & desarrollo
19.
Biochem Biophys Res Commun ; 364(4): 856-60, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17964287

RESUMEN

The Arabidopsis DEMETER (DME) DNA glycosylase is required for the maternal allele expression of imprinted Polycomb group (MEDEA and FIS2) and transcription factor (FWA) genes in the endosperm. Expression of DME in the central cell, not in pollen or stamen, establishes gene imprinting by hypomethylating maternal alleles. However, little is known about other genes regulated by DME. To identify putative DME target genes, we generated CaMV:DME plants which ectopically express DME in pollen and stamens. Comparison of mRNA profiles revealed 94 genes induced by ectopic DME expression in both stamen and pollen. Gene ontology analysis identified three molecular functions enriched in the DME-inducible RNA list: DNA or RNA binding, kinase activity, and transcription factor activity. Semi-quantitative RT-PCR verified the candidate genes identified by GeneChip analysis. The putative target genes identified in this study will provide insights into the regulatory mechanism of DME DNA glycosylase and the functions of DNA demethylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mapeo Cromosómico/métodos , Marcación de Gen/métodos , N-Glicosil Hidrolasas/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transactivadores/genética , Secuencia de Bases , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...