Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-10, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37345564

RESUMEN

The COVID-19 pandemic sparked an unprecedented race in biotechnology in a search for effective therapies and a preventive vaccine. The continued appearance of SARS-CoV-2 variants of concern (VoCs) further swept the world. The entry of SARS-CoV-2 into cells is mediated by binding the receptor-binding domain (RBD) of the S protein to the cell-surface receptor, human angiotensin-converting enzyme 2 (hACE2). In this study, using a coarse-grained force field to parameterize the system, we employed steered-molecular dynamics (SMD) simulations to reveal the binding of SARS-CoV-2 Delta/Omicron RBD to hACE2. Our benchmarked results demonstrate a good correlation between computed rupture force and experimental binding free energy for known protein-protein systems. Moreover, our findings show that the Omicron RBD has a weaker binding affinity to hACE2, consistent with the respective experimental results. This indicates that our method can effectively be applied to other emerging SARS-CoV-2 strains.Communicated by Ramaswamy H. Sarma.

2.
Heliyon ; 8(9): e10474, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36097476

RESUMEN

The energy sector in Vietnam has developed rapidly as the country is transitioning to renewable energy. Moreover, the Vietnamese government also motivates the engagement of private investors in the energy sector to enhance the competitiveness of the energy market. Therefore, this paper investigates how innovation investments and ownership concentration affect the financial sustainability of energy companies in Vietnam. We employ the Fixed Effect Model and Generalized Method of Moments estimations to analyze the sample, including 600 firm-year observations of 103 energy companies from January 2007 to December 2020. The empirical findings show that innovations and block-holders support firms to grow sustainably. The positive relationship between innovation investments and financial sustainability is robust even when we employ alternative proxies of innovation investments. Our study indicates that block-ownership affects sustainable developments of smaller energy firms, while innovation investments significantly improve the sustainability of larger energy firms. Finally, our study reports that the Covid-19 pandemic adversely affects the financial sustainability of energy firms. Our findings align with agency theory, resource-based theory, and prior literature. Our findings recommend that energy firms motivate innovation investments such as training and R&D activities to grow sustainably. In addition, the Vietnamese government should encourage small energy firms to attract blockholders to improve financial sustainability.

3.
Microsyst Nanoeng ; 7: 59, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34567771

RESUMEN

MEMS inductors are used in a wide range of applications in micro- and nanotechnology, including RF MEMS, sensors, power electronics, and Bio-MEMS. Fabrication technologies set the boundary conditions for inductor design and their electrical and mechanical performance. This review provides a comprehensive overview of state-of-the-art MEMS technologies for inductor fabrication, presents recent advances in 3D additive fabrication technologies, and discusses the challenges and opportunities of MEMS inductors for two emerging applications, namely, integrated power electronics and neurotechnologies. Among the four top-down MEMS fabrication approaches, 3D surface micromachining and through-substrate-via (TSV) fabrication technology have been intensively studied to fabricate 3D inductors such as solenoid and toroid in-substrate TSV inductors. While 3D inductors are preferred for their high-quality factor, high power density, and low parasitic capacitance, in-substrate TSV inductors offer an additional unique advantage for 3D system integration and efficient thermal dissipation. These features make in-substrate TSV inductors promising to achieve the ultimate goal of monolithically integrated power converters. From another perspective, 3D bottom-up additive techniques such as ice lithography have great potential for fabricating inductors with geometries and specifications that are very challenging to achieve with established MEMS technologies. Finally, we discuss inspiring and emerging research opportunities for MEMS inductors.

4.
Evol Bioinform Online ; 17: 11769343211003082, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33795930

RESUMEN

A high level of mutation enables the influenza A virus to resist antibiotics previously effective against the influenza A virus. A portion of the structure of hemagglutinin HA is assumed to be well-conserved to maintain its role in cellular fusion, and the structure tends to be more conserved than sequence. We designed peptide inhibitors to target the conserved residues on the HA surface, which were identified based on structural alignment. Most of the conserved and strongly similar residues are located in the receptor-binding and esterase regions on the HA1 domain In a later step, fragments of anti-HA antibodies were gathered and screened for the binding ability to the found conserved residues. As a result, Methionine amino acid got the best docking score within the -2.8 Å radius of Van der Waals when it is interacting with Tyrosine, Arginine, and Glutamic acid. Then, the binding affinity and spectrum of the fragments were enhanced by grafting hotspot amino acid into the fragments to form peptide inhibitors. Our peptide inhibitor was able to form in silico contact with a structurally conserved region across H1, H2, and H3 HA, with the binding site at the boundary between HA1 and HA2 domains, spreading across different monomers, suggesting a new target for designing broad-spectrum antibody and vaccine. This research presents an affordable method to design broad-spectrum peptide inhibitors using fragments of an antibody as a scaffold.

5.
Nano Lett ; 17(12): 7886-7891, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29156134

RESUMEN

Electron-beam lithography (EBL) is the backbone technology for patterning nanostructures and manufacturing nanodevices. It involves processing and handling synthetic resins in several steps, each requiring optimization and dedicated instrumentation in cleanroom environments. Here, we show that simple organic molecules, e.g. alcohols, condensed to form thin-films at low temperature demonstrate resist-like capabilities for EBL applications and beyond. The entire lithographic process takes place in a single instrument, and avoids exposing  users to chemicals and the need of cleanrooms. Unlike EBL that requires large samples with optically flat surfaces, we patterned on fragile membranes only 5 nm-thin, and 2 × 2 mm2 diamond samples. We created patterns on the nanometer to sub-millimeter scale, as well as three-dimensional structures by stacking layers of frozen organic molecules. Finally, using plasma etching, the organic ice resist (OIR) patterns are used to structure the underlying material, and thus enable nanodevice fabrication.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...