Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 946: 174253, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936713

RESUMEN

The global focus on wastewater treatment has intensified in the contemporary era due to its significant environmental and human health impacts. Pharmaceutical compounds (PCs) have become an emerging concern among various pollutants, as they resist conventional treatment methods and pose a severe environmental threat. Advanced oxidation processes (AOPs) emerge as a potent and environmentally benign approach for treating recalcitrant pharmaceuticals. To address the shortcomings of traditional treatment methods, a technology known as the electro-Fenton (EF) method has been developed more recently as an electrochemical advanced oxidation process (EAOP) that connects electrochemistry to the chemical Fenton process. It has shown effective in treating a variety of pharmaceutically active compounds and actual wastewaters. By producing H2O2 in situ through a two-electron reduction of dissolved O2 on an appropriate cathode, the EF process maximizes the benefits of electrochemistry. Herein, we have critically reviewed the application of the EF process, encompassing diverse reactor types and configurations, the underlying mechanisms involved in the degradation of pharmaceuticals and other emerging contaminants (ECs), and the impact of electrode materials on the process. The review also addresses the factors influencing the efficiency of the EF process, such as (i) pH, (ii) current density, (iii) H2O2 concentration, (iv) and others, while providing insight into the scalability potential of EF technology and its commercialization on a global scale. The review delves into future perspectives and implications concerning the ongoing challenges encountered in the operation of the electro-Fenton process for the treatment of PCs and other ECs.


Asunto(s)
Peróxido de Hidrógeno , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua , Peróxido de Hidrógeno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Eliminación de Residuos Líquidos/métodos , Preparaciones Farmacéuticas , Técnicas Electroquímicas , Oxidación-Reducción , Aguas Residuales/química , Hierro/química
2.
J Environ Manage ; 344: 118499, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480638

RESUMEN

The increase of microplastic contamination in Vietnam is a growing concern due to various domestic, agricultural, and industrial activities. The use of plastic mulch and sludge application in agricultural farmland, textile production, daily consumer items, cleaning agents, and health/personal care products contribute significantly to the increasing microplastic pollution in the aquatic ecosystem. The concentration of microplastics reported in surface water ranged from 0.35 to 519,000 items m-3, with fibers and fragments being the most prevalent shapes. Notably, the high concentration of microplastics was observed in lakes, canals, and megacities such as Ha Noi and Ho Chi Minh City, which poses potential health risks to the local community via drinking-water supply and food chains. As an emerging pollutant, MPs are the transport vectors for contaminants in environmental matrices that act as a carrier of hazardous pollutants, release toxic compounds, and evenly aggregate/accumulate in biota. Recent studies have reported the presence of microplastics in various marine organisms, including fish and shellfish, highlighting the risk of ingestion of these particles by humans and wildlife. Thus, it is imperative to monitor microplastic contamination in the ecosystem to provide helpful information for the government and local communities. Efforts should be taken to reduce microplastic pollution at the source to minimize potential effects on ecological and health safety. This review paper emphasizes the urgent need for further research on microplastic pollution in Vietnam and highlights potential solutions to mitigate this emerging environmental threat. KEYWORKS: single-use plastics; microplastics; ecosystems; plastic waste; health risk; ecological and health safety; pollution mitigation.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Animales , Humanos , Microplásticos/toxicidad , Plásticos , Vietnam , Cadena Alimentaria
3.
Sci Total Environ ; 892: 164758, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37308024

RESUMEN

Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.


Asunto(s)
Biodegradación Ambiental , Compostaje , Contaminación Ambiental , Microplásticos , Microbiología del Suelo , Contaminantes del Suelo , Agricultura/métodos , Ecosistema , Contaminación Ambiental/efectos adversos , Contaminación Ambiental/análisis , Microplásticos/efectos adversos , Microplásticos/análisis , Microplásticos/metabolismo , Contaminantes del Suelo/efectos adversos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA