Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Infect Control Hosp Epidemiol ; 45(5): 576-582, 2024 May.
Article En | MEDLINE | ID: mdl-38213184

BACKGROUND: Needleless connectors (NCs) can be disinfected using antiseptic barrier caps (ABCs) to reduce the risk of catheter-related bloodstream infections. However, recent evidence suggests that isopropanol can leak from the ABC into the NC, posing concern about their safe use. We sought to determine in vitro which ABC and NC parameters influence the leakage of isopropanol through the infusion circuit. METHODS: We assessed 13 NCs and 4 ABCs available in the European market. In vitro circuits consisting of an isopropanol cap, a NC, and an 11-cm catheter line were created. The circuits were left in place for 1 to 7 days at room temperature to assess the kinetics of isopropanol leakage. Isopropanol content in ABC and in circuit flushing solutions (5 mL NaCl 0.9%) after exposure to the cap were measured using gas chromatography with a flame ionization detector. RESULTS: The leakage of isopropanol from the cap to the NC was dependent on the NC, but not the cap. The NC mechanism did not predict the leakage of isopropanol. The Q-Syte NC exhibited the most isopropanol leakage (7.01±1.03 mg and 28.32±2.62 mg at 24 hours and 7 days, respectively), whereas the Caresite NC had the lowest isopropanol leakage at 7 days (1.69±0.01 mg). CONCLUSION: The use of isopropanol ABCs can cause isopropanol leakage into the catheter circuit according to NC parameters. Caution should be exercised when using these devices, especially in the pediatric and neonatal population.


2-Propanol , Anti-Infective Agents, Local , Infant, Newborn , Humans , Child , Catheters, Indwelling , Equipment Contamination
2.
Arch Toxicol ; 98(1): 151-158, 2024 Jan.
Article En | MEDLINE | ID: mdl-37833490

Eutylone is a cathinone-derived synthetic amphetamine scheduled by the World Health Organization and European Monitoring Centre for Drugs and Drug Addiction since 2022 due to its growing consumption. We report here an eutylone intoxication involving a 38-year-old man and a 29-year-old woman in a chemsex context. A bag containing a white crystalline powder labelled as a research product was found in their vehicle. Nuclear magnetic resonance and liquid chromatography-high-resolution mass spectrometry (LC-HRMS) analyses identified the powder as eutylone and confirmed purity superior to 99%. LC-HRMS data analysis using molecular networking allowed to propose new eutylone metabolites in blood samples in a graphical manner. We described 16 phase I (e.g. hydroxylated or demethylated) and phase II metabolites (glucuroconjugates and sulfoconjugates). The same metabolites were found both in male and female blood samples. Toxicological analyses measured eutylone concentration in blood samples at 1374 ng/mL and 1536 ng/mL for the man and the woman, respectively. A keto-reduced metabolite (m/z 238.144) was synthesized to permit its quantification at 67 ng/mL and 54 ng/mL in male and female blood samples, respectively. Overall, the identification of these metabolites will increase the knowledge of potential drug consumption markers and allow to implement mass spectrometry databases to better monitor future drug abuse or consumption.


Substance-Related Disorders , Humans , Male , Female , Adult , Chromatography, Liquid/methods , Powders , Mass Spectrometry/methods , Substance-Related Disorders/diagnosis , Amphetamine
3.
Arch Toxicol ; 97(3): 671-683, 2023 Mar.
Article En | MEDLINE | ID: mdl-36469093

Synthetic cathinones constitute a family of new psychoactive substances, the consumption of which is increasingly worldwide. A lack of metabolic knowledge limits the detection of these compounds in cases of intoxication. Here, we used an innovative cross-disciplinary approach to study the metabolism of the newly emerging cathinone chloro-alpha-pyrrolidinovalerophenone (4-Cl-PVP). Three complementary approaches (in silico, in vitro, and in vivo) were used to identify putative 4-Cl-PVP metabolites that could be used as additional consumption markers. The in silico approach used predictive software packages. Molecular networking was used as an innovative bioinformatics approach for re-processing high-resolution tandem mass spectrometry data acquired with both in vitro and in vivo samples. In vitro experiments were performed by incubating 4-Cl-PVP (20 µM) for four different durations with a metabolically competent human hepatic cell model (differentiated HepaRG cells). In vivo samples (blood and urine) were obtained from a patient known to have consumed 4-Cl-PVP. The in silico software predicted 17 putative metabolites, and molecular networking identified 10 metabolites in vitro. On admission to the intensive care unit, the patient's plasma and urine 4-Cl-PVP concentrations were, respectively, 34.4 and 1018.6 µg/L. An in vivo analysis identified the presence of five additional glucuronoconjugated 4-Cl-PVP derivatives in the urine. Our combination of a cross-disciplinary approach with molecular networking enabled the detection of 15 4-Cl-PVP metabolites, 10 of them had not previously been reported in the literature. Two metabolites appeared to be particular relevant candidate as 4-Cl-PVP consumption markers in cases of intoxication: hydroxy-4-Cl-PVP (m/z 282.1254) and dihydroxy-4-Cl-PVP (m/z 298.1204).


Pyrrolidines , Synthetic Cathinone , Humans , Tandem Mass Spectrometry , Software
4.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article En | MEDLINE | ID: mdl-36555217

Since the 2000s, an increasing number of new psychoactive substances (NPS) have appeared on the drug market. Arylcyclohexylamine (ACH) compounds such as ketamine, phencyclidine and eticyclidine derivatives are of particular concern, given their rapidly increasing use and the absence of detailed toxicity data. First used mainly for their pharmacological properties in anesthesia, their recreational use is increasing. ACH derivatives have an antagonistic activity against the N-methyl-D-aspartate receptor, which leads to dissociative effects (dissociation of body and mind). Synthetic ketamine derivatives produced in Asia are now arriving in Europe, where most are not listed as narcotics and are, thus, legal. These structural derivatives have pharmacokinetic and pharmacodynamic properties that are sometimes very different from ketamine. Here, we describe the pharmacology, epidemiology, chemistry and metabolism of ACH derivatives, and we review the case reports on intoxication.


Ketamine , Ketamine/pharmacology , Phencyclidine , Receptors, N-Methyl-D-Aspartate , Asia , Europe
...