Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Exp Bot ; 75(13): 3903-3919, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530289

RESUMEN

Sugars Will Eventually be Exported Transporters (SWEETs) are the most recently discovered family of plant sugar transporters. By acting as uniporters, SWEETs facilitate the diffusion of sugars across cell membranes and play an important role in various physiological processes such as abiotic stress adaptation. AtSWEET17, a vacuolar fructose facilitator, was shown to be involved in the modulation of the root system during drought. In addition, previous studies have shown that overexpression of an apple homolog leads to increased drought tolerance in tomato plants. Therefore, SWEET17 might be a molecular element involved in plant responses to drought. However, the role and function of SWEET17 in above-ground tissues of Arabidopsis under drought stress remain elusive. By combining gene expression analysis and stem architecture with the sugar profiles of different above-ground tissues, we uncovered a putative role for SWEET17 in carbohydrate supply and thus cauline branch elongation, especially during periods of carbon limitation, as occurs under drought stress. Thus, SWEET17 seems to be involved in maintaining efficient plant reproduction under drought stress conditions.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Sequías , Inflorescencia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Inflorescencia/crecimiento & desarrollo , Inflorescencia/metabolismo , Inflorescencia/genética
2.
Physiol Plant ; 174(6): e13830, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36437708

RESUMEN

Carbon (C) and nitrogen (N) metabolisms have long been known to be coupled, and this is required for adjusting nitrogen use efficiency (NUE). Despite this intricate relationship, it is still unclear how deregulation of sugar transport impacts N allocation. Here, we investigated in Arabidopsis the consequences of the simultaneous downregulation of the genes coding for the sugar transporters SWEET11, SWEET12, SWEET16, and SWEET17 on various anatomical and physiological traits ranging from the stem's vascular system development to plant biomass production, seed yield, and N remobilization and use efficiency. Our results show that intracellular sugar exchanges mediated by SWEET16 and SWEET17 proteins specifically impact vascular development but do not play a significant role in the distribution of N. Most importantly, we showed that the double mutant swt11 swt12, which has an impacted vascular development, displays an improved NUE and nitrogen remobilization to the seeds. In addition, a significant negative correlation between sugar and amino acids contents and the inflorescence stem radial growth exists, highlighting the complex interaction between the maintenance of C/N homeostasis and the inflorescence stem development. Our results thus deepen the link between sugar transport, C/N allocation, and vascular system development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Nitrógeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Azúcares/metabolismo , Proteínas de Transporte de Membrana/metabolismo
4.
J Plant Physiol ; 273: 153707, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35550522

RESUMEN

Phloem and xylem tissues are necessary for the allocation of nutrients and photoassimilates. However, how the long-distance transport of carbon (C) and nitrogen (N) is coordinated with the central metabolism is largely unknown. To better understand how the genetic and environmental factors influence C and N transport, we analysed the metabolite profiles of phloem exudates and xylem saps of five Arabidopsis thaliana accessions grown in low or non-limiting N supply. We observed that xylem saps were composed of 46 or 56% carbohydrates, 27 or 45% amino acids, and 5 or 13% organic acids in low or non-limiting N supply, respectively. In contrast, phloem exudates were composed of 76 or 86% carbohydrates, 7 or 18% amino acids, and 5 or 6% organic acids. Variation in N supply impacted amino acid, organic acid and sugar contents. When comparing low N and non-limiting N, the most striking differences were variations of glutamine, aspartate, and succinate abundance in the xylem saps and citrate and fumarate abundance in phloem exudates. In addition, we observed a substantial variation of metabolite content between genotypes, particularly under high N. The content of several organic acids, such as malate, citrate, fumarate, and succinate was affected by the genotype alone or by the interaction between genotype and N supply. This study confirmed that the response of the transport of nutrients in the phloem and the xylem to N availability is associated with the regulation of the central metabolism and could be an adaptive trait.


Asunto(s)
Arabidopsis , Floema , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Transporte Biológico , Carbohidratos/análisis , Citratos/análisis , Citratos/metabolismo , Fumaratos/análisis , Fumaratos/metabolismo , Nutrientes , Floema/metabolismo , Succinatos/análisis , Succinatos/metabolismo , Xilema/metabolismo
5.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457046

RESUMEN

DspA/E is a type three effector injected by the pathogenic bacterium Erwinia amylovora inside plant cells. In non-host Arabidopsis thaliana, DspA/E inhibits seed germination, root growth, de novo protein synthesis and triggers localized cell death. To better understand the mechanisms involved, we performed EMS mutagenesis on a transgenic line, 13-1-2, containing an inducible dspA/E gene. We identified three suppressor mutants, two of which belonged to the same complementation group. Both were resistant to the toxic effects of DspA/E. Metabolome analysis showed that the 13-1-2 line was depleted in metabolites of the TCA cycle and accumulated metabolites associated with cell death and defense. TCA cycle and cell-death associated metabolite levels were respectively increased and reduced in both suppressor mutants compared to the 13-1-2 line. Whole genome sequencing indicated that both suppressor mutants displayed missense mutations in conserved residues of Glycolate oxidase 2 (GOX2), a photorespiratory enzyme that we confirmed to be localized in the peroxisome. Leaf GOX activity increased in leaves infected with E. amylovora in a DspA/E-dependent manner. Moreover, the gox2-2 KO mutant was more sensitive to E. amylovora infection and displayed reduced JA-signaling. Our results point to a role for glycolate oxidase in type II non-host resistance and to the importance of central metabolic functions in controlling growth/defense balance.


Asunto(s)
Arabidopsis , Erwinia amylovora , Oxidorreductasas de Alcohol/metabolismo , Arabidopsis/metabolismo , Proteínas Bacterianas/metabolismo , Erwinia amylovora/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
6.
Physiol Plant ; 174(2): e13684, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35396718

RESUMEN

Plant growth and development rely on the transport and use of sugars produced during photosynthesis. Sugars have a dual function as nutrients and signal molecules in the cell. Many factors maintaining sugar homeostasis and signaling are now identified, but our understanding of the mechanisms involved in coordinating intracellular and intercellular sugar translocation is still limited. We also know little about the interplay between sugar transport and signaling and the formation of the vascular system, which controls long-distance sugar translocation. Sugar signaling has been proposed to play a role; however, evidence to support this hypothesis is still limited. Here, we exploited recent transcriptomics datasets produced in aerial organs of Arabidopsis to identify genes coding for sugar transporters or signaling components expressed in the vascular cells. We identified genes belonging to sugar transport and signaling for which no information is available regarding a role in vasculature development. In addition, the transcriptomics datasets obtained from sugar-treated Arabidopsis seedlings were used to assess the sugar-responsiveness of known genes involved in vascular differentiation. Interestingly, several key regulators of vascular development were found to be regulated by either sucrose or glucose. Especially CLE41, which controls the procambial cell fate, was oppositely regulated by sucrose or glucose in these datasets. Even if more experimental data are necessary to confirm these findings, this survey supports a link between sugar transport/signaling and vascular system development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Carbohidratos , Regulación de la Expresión Génica de las Plantas , Glucosa , Sacarosa , Azúcares
7.
Plant Physiol ; 188(2): 1229-1247, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34865141

RESUMEN

In Angiosperms, the development of the vascular system is controlled by a complex network of transcription factors. However, how nutrient availability in the vascular cells affects their development remains to be addressed. At the cellular level, cytosolic sugar availability is regulated mainly by sugar exchanges at the tonoplast through active and/or facilitated transport. In Arabidopsis (Arabidopsis thaliana), among the genes encoding tonoplastic transporters, SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER 16 (SWEET16) and SWEET17 expression has been previously detected in the vascular system. Here, using a reverse genetics approach, we propose that sugar exchanges at the tonoplast, regulated by SWEET16, are important for xylem cell division as revealed in particular by the decreased number of xylem cells in the swt16 mutant and the accumulation of SWEET16 at the procambium-xylem boundary. In addition, we demonstrate that transport of hexoses mediated by SWEET16 and/or SWEET17 is required to sustain the formation of the xylem secondary cell wall. This result is in line with a defect in the xylem cell wall composition as measured by Fourier-transformed infrared spectroscopy in the swt16swt17 double mutant and by upregulation of several genes involved in secondary cell wall synthesis. Our work therefore supports a model in which xylem development partially depends on the exchange of hexoses at the tonoplast of xylem-forming cells.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Hexosas/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Xilema/crecimiento & desarrollo , Xilema/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Variación Genética , Genotipo , Inflorescencia/metabolismo , Mutación , Vacuolas/fisiología , Xilema/metabolismo
8.
Plant Physiol ; 187(4): 2716-2730, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34597404

RESUMEN

Root growth and architecture are markedly influenced by both developmental and environmental cues. Sugars integrate different stimuli and are essential building blocks and signaling molecules for modulating the root system. Members from the SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET) family facilitate the transport of different sugars over cellular membranes and steer both inter and intracellular distribution of sugars. SWEET17 represents a fructose-specific sugar porter localized to the vacuolar membrane, the tonoplast. Here, we analyzed how SWEET17-dependent fructose released from vacuoles affects root growth during drought stress in Arabidopsis (Arabidopsis thaliana). We found that the SWEET17 gene was predominantly expressed in the root vasculature and in meristematic cells of the root tip. SWEET17 expression appeared markedly induced during lateral root (LR) outgrowth and under drought. Moreover, fructose repressed primary root growth but induced density and length of first order LRs. Consistently, sweet17 knock-out mutants exhibited reduced LR growth and a diminished expression of LR-development-related transcription factors during drought stress, resulting in impaired drought tolerance of sweet17 mutants. We discuss how SWEET17 activity integrates drought-induced cellular responses into fructose signaling necessary for modulation of the root system and maximal drought tolerance.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Sequías , Proteínas de Transporte de Membrana/genética , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Raíces de Plantas/genética
9.
Plant Physiol ; 185(2): 478-490, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721907

RESUMEN

The architecture of the seed is shaped by the processes of tissue partitioning, which determines the volume ratio of maternal and zygotic tissues, and nutrient partitioning, which regulates nutrient distribution among tissues. In angiosperms, early seed development is characterized by antagonistic development of the nucellus maternal tissue and the endosperm fertilization product to become the main sugar sink. This process marked the evolution of angiosperms and outlines the most ancient seed architectures. In Arabidopsis, the endosperm partially eliminates the nucellus and imports sugars from the seed coat. Here, we show that the nucellus is symplasmically connected to the chalaza, the seed nutrient unloading zone, and works as both a sugar sink and source alongside the seed coat. After fertilization, the transient nucellus accumulates starch early on and releases it in the apoplasmic space during its elimination. By contrast, the persistent nucellus exports sugars toward the endosperm through the SWEET4 hexose facilitator. Finally, we analyzed sugar metabolism and transport in the transparent testa 16 mutant, which fails to undergo nucellus cell elimination, which shed light on the coordination between tissue and nutrient partitioning. Overall, this study identifies a path of sugar transport in the Arabidopsis seed and describes a link between sugar redistribution and the nucellus cell-elimination program.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Magnoliopsida/embriología , Proteínas de Transporte de Monosacáridos/metabolismo , Azúcares/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Endospermo/embriología , Endospermo/genética , Endospermo/metabolismo , Magnoliopsida/genética , Magnoliopsida/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Mutación , Semillas/embriología , Semillas/genética , Semillas/metabolismo , Almidón/metabolismo
10.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33451049

RESUMEN

Phytoplasmas inhabit phloem sieve elements and cause abnormal growth and altered sugar partitioning. However, how they interact with phloem functions is not clearly known. The phloem responses were investigated in tomatoes infected by "Candidatus Phytoplasma solani" at the beginning of the symptomatic stage, the first symptoms appearing in the newly emerged leaf at the stem apex. Antisense lines impaired in the phloem sucrose transporters SUT1 and SUT2 were included. In symptomatic sink leaves, leaf curling was associated with higher starch accumulation and the expression of defense genes. The analysis of leaf midribs of symptomatic leaves indicated that transcript levels for genes acting in the glycolysis and peroxisome metabolism differed from these in noninfected plants. The phytoplasma also multiplied in the three lower source leaves, even if it was not associated with the symptoms. In these leaves, the rate of phloem sucrose exudation was lower for infected plants. Metabolite profiling of phloem sap-enriched exudates revealed that glycolate and aspartate levels were affected by the infection. Their levels were also affected in the noninfected SUT1- and SUT2-antisense lines. The findings suggest the role of sugar transporters in the responses to infection and describe the consequences of impaired sugar transport on the primary metabolism.


Asunto(s)
Proteínas de Transporte de Monosacáridos/genética , Floema/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Azúcares/metabolismo , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Interacciones Huésped-Patógeno , Metabolómica/métodos , Proteínas de Transporte de Monosacáridos/metabolismo , Fenotipo , Floema/metabolismo , Floema/ultraestructura , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Almidón/metabolismo
11.
J Exp Bot ; 71(22): 7301-7315, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32860502

RESUMEN

Plants live in close relationships with complex populations of microorganisms, including rhizobacterial species commonly referred to as plant growth-promoting rhizobacteria (PGPR). PGPR are able to improve plant productivity, but the molecular mechanisms involved in this process remain largely unknown. Using an in vitro experimental system, the model plant Arabidopsis thaliana, and the well-characterized PGPR strain Pseudomonas simiae WCS417r (PsWCS417r), we carried out a comprehensive set of phenotypic and gene expression analyses. Our results show that PsWCS417r induces major transcriptional changes in sugar transport and in other key biological processes linked to plant growth, development, and defense. Notably, we identified a set of 13 genes of the SWEET and ERD6-like sugar transporter gene families whose expression is up- or down-regulated in response to seedling root inoculation with the PGPR or exposure to their volatile compounds. Using a reverse genetic approach, we demonstrate that SWEET11 and SWEET12 are functionally involved in the interaction and its plant growth-promoting effects, possibly by controlling the amount of sugar transported from the shoot to the root and to the PGPR. Altogether, our study reveals that PGPR-induced beneficial effects on plant growth and development are associated with changes in plant sugar transport.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Membrana , Raíces de Plantas/metabolismo , Pseudomonas/metabolismo , Azúcares
12.
Mol Plant ; 12(11): 1499-1514, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31520787

RESUMEN

In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Hipocótilo/metabolismo , Estabilidad Proteica
13.
Int J Mol Sci ; 20(13)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261714

RESUMEN

The regulation of sugar metabolism and partitioning plays an essential role for a plant's acclimation to its environment, with specific responses in autotrophic and heterotrophic organs. In this work, we analyzed the effects of high salinity on sugar partitioning and vascular anatomy within the floral stem. Stem sucrose and fructose content increased, while starch reduced, in contrast to the response observed in rosette leaves of the same plants. In the stem, the effects were associated with changes in the expression of SWEET and TMT2 genes encoding sugar transporters, SUSY1 encoding a sucrose synthase and several FRK encoding fructokinases. By contrast, the expression of SUC2, SWEET11 and SWEET12, encoding sugar transporters for phloem loading, remained unchanged in the stem. Both the anatomy of vascular tissues and the composition of xylem secondary cell walls were altered, suggesting that high salinity triggered major readjustments of sugar partitioning in this heterotrophic organ. There were changes in the composition of xylem cell walls, associated with the collapse and deformation of xylem vessels. The data are discussed regarding sugar partitioning and homeostasis of sugars in the vascular tissues of the stem.


Asunto(s)
Floema/metabolismo , Estrés Salino , Azúcares/metabolismo , Xilema/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Fructoquinasas/genética , Fructoquinasas/metabolismo , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Transporte de Monosacáridos/metabolismo , Floema/citología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/citología
14.
Methods Mol Biol ; 2014: 95-108, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31197789

RESUMEN

Confocal laser scanning microscopy can enable observation of phloem cells in living tissues. Here we describe live imaging of phloem cells in the leaves and roots of Arabidopsis thaliana using fluorescently tagged proteins, either expressed in the vasculature using phloem specific promoters or constitutively expressed reference marker lines. Now, the majority of phloem cell types can be identified, allowing a precise cellular and subcellular localization of phloem proteins.


Asunto(s)
Microscopía Confocal , Floema/metabolismo , Proteínas de Plantas/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Hojas de la Planta/citología , Hojas de la Planta/metabolismo
15.
Plants (Basel) ; 8(3)2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30862126

RESUMEN

Plant responses to abiotic stresses entail adaptive processes that integrate both physiological and developmental cues. However, the adaptive traits that are involved in the responses to a high soil salinity during reproductive growth are still poorly studied. To identify new clues, we studied the halophyte, Thellungiella salsuginea, and three Arabidopsis accessions, known as tolerant or salt-sensitive. We focused on the quantitative traits associated with the stem growth, sugar content, and anatomy of the plants subjected to the salt treatment, with and without a three-day acclimation, applied during the reproductive stage. The stem growth of Thellungiella salsuginea was not affected by the salt stress. By contrast, salt affected all of the Arabidopsis accessions, with a natural variation in the effect of the salt on growth, sugar content, and stem anatomy. In response to the high salinity, irregular xylem vessels were observed, independently of the accession's tolerance to salt treatment, while the diameter of the largest xylem vessels was reduced in the tolerant accessions. The stem height, growth rate, hexoses-to-sucrose ratio, and phloem-to-xylem ratio also varied, in association with both the genotype and its tolerance to salt stress. Our findings indicate that several quantitative traits for salt tolerance are associated with the control of inflorescence growth and the adjustment of the phloem-to-xylem ratio.

16.
Plants (Basel) ; 8(1)2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30650538

RESUMEN

Organic (e.g., sugars and amino acids) and inorganic (e.g., K⁺, Na⁺, PO42-, and SO42-) solutes are transported long-distance throughout plants. Lateral movement of these compounds between the xylem and the phloem, and vice versa, has also been reported in several plant species since the 1930s, and is believed to be important in the overall resource allocation. Studies of Arabidopsis thaliana have provided us with a better knowledge of the anatomical framework in which the lateral transport takes place, and have highlighted the role of specialized vascular and perivascular cells as an interface for solute exchanges. Important breakthroughs have also been made, mainly in Arabidopsis, in identifying some of the proteins involved in the cell-to-cell translocation of solutes, most notably a range of plasma membrane transporters that act in different cell types. Finally, in the future, state-of-art imaging techniques should help to better characterize the lateral transport of these compounds on a cellular level. This review brings the lateral transport of sugars and inorganic solutes back into focus and highlights its importance in terms of our overall understanding of plant resource allocation.

17.
Curr Opin Plant Biol ; 43: 108-112, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29704830

RESUMEN

Thousands of sieve tube exudate proteins (STEP) have now been identified and predicted to fulfill a diversity of functions. However, most STEPs should be considered putative, since methods to collect sieve tube exudates have many technical drawbacks, and advanced functional characterization will be required to distinguish contaminant from bonafide proteins, and determine the latter's location and activity in sieve elements (SE). One major challenge is to develop new approaches to elucidate the function of these SE proteins, which in turn, is expected to shed light on intriguing aspects of SE cell biology.


Asunto(s)
Floema/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Modelos Biológicos
18.
Physiol Plant ; 160(3): 312-327, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28369972

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors are involved in a wide range of developmental processes and in response to biotic and abiotic stresses. They represent one of the biggest families of transcription factors but only few of them have been functionally characterized. Here we report the characterization of AtbHLH68 and show that, although the knock out mutant did not have an obvious development phenotype, it was slightly more sensitive to drought stress than the Col-0, and AtbHLH68 overexpressing lines displayed defects in lateral root (LR) formation and a significant increased tolerance to drought stress, likely related to an enhanced sensitivity to abscisic acid (ABA) and/or increased ABA content. AtbHLH68 was expressed in the vascular system of Arabidopsis and its expression was modulated by exogenously applied ABA in an organ-specific manner. We showed that the expression of genes involved in ABA metabolism [AtAAO3 (AtALDEHYDE OXIDASE 3) and AtCYP707A3 (AtABSCISIC ACID 8'HYDROXYLASE 3)], in ABA-related response to drought-stress (AtMYC2, AtbHLH122 and AtRD29A) or during LRs development (AtMYC2 and AtABI3) was de-regulated in the overexpressing lines. We propose that AtbHLH68 has a function in the regulation of LR elongation, and in the response to drought stress, likely through an ABA-dependent pathway by regulating directly or indirectly components of ABA signaling and/or metabolism.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Estrés Fisiológico/genética , Ácido Abscísico/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Germinación/genética , Germinación/fisiología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
20.
PLoS One ; 10(2): e0118122, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25714357

RESUMEN

The phloem is a complex tissue composed of highly specialized cells with unique subcellular structures and a compact organization that is challenging to study in vivo at cellular resolution. We used confocal scanning laser microscopy and subcellular fluorescent markers in companion cells and sieve elements, for live imaging of the phloem in Arabidopsis leaves. This approach provided a simple framework for identifying phloem cell types unambiguously. It highlighted the compactness of the meshed network of organelles within companion cells. By contrast, within the sieve elements, unknown bodies were observed in association with the PP2-A1:GFP, GFP:RTM1 and RTM2:GFP markers at the cell periphery. The phloem lectin PP2-A1:GFP marker was found in the parietal ground matrix. Its location differed from that of the P-protein filaments, which were visualized with SEOR1:GFP and SEOR2:GFP. PP2-A1:GFP surrounded two types of bodies, one of which was identified as mitochondria. This location suggested that it was embedded within the sieve element clamps, specific structures that may fix the organelles to each another or to the plasma membrane in the sieve tubes. GFP:RTM1 was associated with a class of larger bodies, potentially corresponding to plastids. PP2-A1:GFP was soluble in the cytosol of immature sieve elements. The changes in its subcellular localization during differentiation provide an in vivo blueprint for monitoring this process. The subcellular features obtained with these companion cell and sieve element markers can be used as landmarks for exploring the organization and dynamics of phloem cells in vivo.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Transporte Biológico , Biomarcadores , Espacio Intracelular/metabolismo , Microscopía Confocal , Floema/citología , Floema/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA