Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 14180, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38898152

RESUMEN

In this study, we introduce an affordable and accessible method that combines optical microscopy and photogrammetry to reconstruct 3D models of Tahitian pearls. We present a novel device designed for acquiring microscopic images around a sphere using translational displacement stages and outline our method for reconstructing these images. We successfully created 3D models of two individual pearl rings, each representing 6.3% of the pearl's surface. Additionally, we generated a combined model representing 10.3% of the pearl's surface. This showcases the potential for reconstructing entire pearls with appropriate instrumentation. We emphasize that our approach extends beyond pearls and spherical objects and can be adapted for various object types using appropriate acquisition devices. We provide a proof of concept demonstrating the feasibility of 3D photogrammetry using optical microscopy. Consequently, our method offers a practical and cost-effective alternative for generating 3D models at a microscopic scale, particularly when detailed internal structure information is unnecessary.

2.
Environ Sci Technol ; 58(1): 207-218, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38116932

RESUMEN

Pearl farming is crucial for the economy of French Polynesia. However, rearing structures contribute significantly to plastic waste, and the widespread contamination of pearl farming lagoons by microplastics has raised concerns about risks to the pearl industry. This study aimed to evaluate the effects of micro-nanoplastics (MNPs, 0.4-200 µm) on the pearl oyster (Pinctada margaritifera) over a 5-month pearl production cycle by closely mimicking ecological scenarios. MNPs were produced from weathered plastic pearl farming gear and tested at environmentally relevant concentrations (0.025 and 1 µg L-1) to decipher biological and functional responses through integrative approaches. The significant findings highlighted the impacts of MNPs on oyster physiology and pearl quality, even at remarkably low concentrations. Exposure to MNPs induced changes in energy metabolism, predominantly driven by reduced assimilation efficiency of microalgae, leading to an alteration in gene expression patterns. A distinct gene expression module exhibited a strong correlation with physiological parameters affected by MNP conditions, identifying key genes as potential environmental indicators of nutritional-MNP stress in cultured oysters. The alteration in pearl biomineralization, evidenced by thinner aragonite crystals and the presence of abnormal biomineral concretions, known as keshi pearls, raises concerns about the potential long-term impact on the Polynesian pearl industry.


Asunto(s)
Ostreidae , Pinctada , Animales , Microplásticos , Plásticos , Agricultura , Granjas , Pinctada/metabolismo
3.
Sci Rep ; 13(1): 13122, 2023 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-37573433

RESUMEN

Tahitian pearls, artificially cultivated from the black-lipped pearl oyster Pinctada margaritifera, are renowned for their unique color and large size, making the pearl industry vital for the French Polynesian economy. Understanding the mechanisms of pearl formation is essential for enabling quality and sustainable production. In this paper, we explore the process of pearl formation by studying pearl rotation. Here we show, using a deep convolutional neural network, a direct link between the rotation of the pearl during its formation in the oyster and its final shape. We propose a new method for non-invasive pearl monitoring and a model for predicting the final shape of the pearl from rotation data with 81.9% accuracy. These novel resources provide a fresh perspective to study and enhance our comprehension of the overall mechanism of pearl formation, with potential long-term applications for improving pearl production and quality control in the industry.


Asunto(s)
Pinctada , Animales , Rotación
4.
J Struct Biol ; 214(4): 107909, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36309120

RESUMEN

In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the ν1 calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals.


Asunto(s)
Carbonatos , Microscopía , Reproducibilidad de los Resultados , Carbonato de Calcio
5.
J Anim Ecol ; 91(6): 1196-1208, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35435257

RESUMEN

Ocean warming challenges marine organisms' resilience, especially for species experiencing temperatures close to their upper thermal limits. A potential increase in thermal tolerance might significantly reduce the risk of population decline, which is intrinsically linked to variability in local habitat temperatures. Our goal was to assess the plastic and genetic potential of response to elevated temperatures in a tropical bivalve model, Pinctada margaritifera. We benefit from two ecotypes for which local environmental conditions are characterized by either large diurnal variations in the tide pools (Marquesas archipelago) or low mean temperature with stable to moderate seasonal variations (Gambier archipelago). We explored the physiological basis of individual responses to elevated temperature, genetic divergence as well as plasticity and acclimation by combining lipidomic and transcriptomic approaches. We show that P. margaritifera has certain capacities to adjust to long-term elevated temperatures that was thus far largely underestimated. Genetic variation across populations overlaps with gene expression and involves the mitochondrial respiration machinery, a central physiological process that contributes to species thermal sensitivity and their distribution ranges. Our results present evidence for acclimation potential in P. margaritifera and urge for longer term studies to assess populations resilience in the face of climate change.


Le réchauffement des océans remet en question la résilience des organismes marins, en particulier pour les espèces connaissant des températures proches de leurs limites thermiques supérieures. Une augmentation potentielle de la tolérance thermique pourrait ainsi réduire considérablement le risque de déclin de la population. L'objectif de cette étude était d'évaluer le potentiel plastique et génétique de la réponse à l'exposition courte et chronique à températures élevées chez une espèce de bivalve tropical, Pinctada margaritifera. Ce modèle bénéficie de l'existence de deux écotypes pour lesquels les conditions environnementales locales sont caractérisées soit par de fortes variations diurnes associées aux marées (archipel des Marquises) soit par une température moyenne plus basse et des variations saisonnières prononcées (archipel des Gambier). Nous avons exploré les bases physiologiques des réponses individuelles ainsi que la divergence génétique et quantifié la plasticité en combinant des approches lipidomique et transcriptomique. Nous montrons que P. margaritifera possède des capacités d'acclimatation à des températures élevées sur le long terme jusqu'à présent largement sous-estimées. La divergence génétique entre populations est par ailleurs associée à des différences d'expression des gènes et implique la machinerie respiratoire mitochondriale, un processus physiologique central qui contribue à la sensibilité thermique des espèces et à leurs répartitions. Nos résultats présentent les bases des potentiels d'acclimatation chez P. margaritifera et soulignent l'importance d'études à plus long terme pour évaluer la résilience des populations face au changement climatique.


Asunto(s)
Bivalvos , Ácidos Grasos , Aclimatación/fisiología , Animales , Bivalvos/genética , Cambio Climático , Expresión Génica , Variación Genética , Temperatura
6.
Genome Biol Evol ; 14(4)2022 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-35276004

RESUMEN

Human activities and resource exploitation led to a massive decline of wild salmonid populations, consequently, numerous conservation programs have been developed to supplement wild populations. However, many studies documented reduced fitness of hatchery-born relative to wild fish. Here, by using both RNA sequencing and Whole Genome Bisulfite Sequencing of hatchery and wild-born adult Coho salmon (Oncorhynchus kisutch) originating from two previously studied river systems, we show that early-life hatchery-rearing environment-induced significant and parallel gene expression differentiation is maintained until Coho come back to their natal river for reproduction. A total of 3,643 genes differentially expressed and 859 coexpressed genes were downregulated in parallel in hatchery-born fish from both rivers relative to their wild congeners. Among those genes, 26 displayed a significant relationship between gene expression and the median gene body methylation and 669 single CpGs displayed a significant correlation between methylation level and the associated gene expression. The link between methylation and gene expression was weak suggesting that DNA methylation is not the only player in mediating hatchery-related expression differences. Yet, significant gene expression differentiation was observed despite 18 months spent in a common environment (i.e., the sea). Finally, the differentiation is observed in parallel in two different river systems, highlighting the fact that early-life environment may account for at least some of the reduced fitness of the hatchery salmon in the wild. These results illustrate the relevance and importance of considering both epigenome and transcriptome to evaluate the costs and benefits of large-scale supplementation programs.


Asunto(s)
Oncorhynchus kisutch , Animales , Metilación de ADN , Expresión Génica , Oncorhynchus kisutch/genética , Ríos , Salmón
7.
Evol Appl ; 15(1): 149-165, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35126653

RESUMEN

Identifying the molecular mechanisms involved in rapid adaptation to novel environments and determining their predictability are central questions in evolutionary biology and pressing issues due to rapid global changes. Complementary to genetic responses to selection, faster epigenetic variations such as modifications of DNA methylation may play a substantial role in rapid adaptation. In the context of rampant urbanization, joint examinations of genomic and epigenomic mechanisms are still lacking. Here, we investigated genomic (SNP) and epigenomic (CpG methylation) responses to urban life in a passerine bird, the Great tit (Parus major). To test whether urban evolution is predictable (i.e. parallel) or involves mostly nonparallel molecular processes among cities, we analysed both SNP and CpG methylation variations across three distinct pairs of city and forest Great tit populations in Europe. Our analyses reveal a polygenic response to urban life, with both many genes putatively under weak divergent selection and multiple differentially methylated regions (DMRs) between forest and city great tits. DMRs mainly overlapped transcription start sites and promotor regions, suggesting their importance in modulating gene expression. Both genomic and epigenomic outliers were found in genomic regions enriched for genes with biological functions related to the nervous system, immunity, or behavioural, hormonal and stress responses. Interestingly, comparisons across the three pairs of city-forest populations suggested little parallelism in both genetic and epigenetic responses. Our results confirm, at both the genetic and epigenetic levels, hypotheses of polygenic and largely nonparallel mechanisms of rapid adaptation in novel environments such as urbanized areas.

8.
Glob Chang Biol ; 28(10): 3333-3348, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35092108

RESUMEN

Studies on the impact of ocean acidification on marine organisms involve exposing organisms to future acidification scenarios, which has limited relevance for coastal calcifiers living in a mosaic of habitats. Identification of tipping points beyond which detrimental effects are observed is a widely generalizable proxy of acidification susceptibility at the population level. This approach is limited to a handful of studies that focus on only a few macro-physiological traits, thus overlooking the whole organism response. Here we develop a framework to analyze the broad macro-physiological and molecular responses over a wide pH range in juvenile oyster. We identify low tipping points for physiological traits at pH 7.3-6.9 that coincide with a major reshuffling in membrane lipids and transcriptome. In contrast, a drop in pH affects shell parameters above tipping points, likely impacting animal fitness. These findings were made possible by the development of an innovative methodology to synthesize and identify the main patterns of variations in large -omic data sets, fitting them to pH and identifying molecular tipping points. We propose the broad application of our framework to the assessment of effects of global change on other organisms.


Asunto(s)
Dióxido de Carbono , Agua de Mar , Animales , Dióxido de Carbono/química , Ecosistema , Concentración de Iones de Hidrógeno , Agua de Mar/química , Transcriptoma
9.
Evol Appl ; 14(10): 2402-2413, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34745334

RESUMEN

Human activities induce direct or indirect selection pressure on natural population and may ultimately affect population's integrity. While numerous conservation programs aimed to minimize human-induced genomic variation, human-induced environmental variation may generate epigenomic variation potentially affecting fitness through phenotypic modifications. Major questions remain pertaining to how much epigenomic variation arises from environmental heterogeneity, whether this variation can persist throughout life, and whether it can be transmitted across generations. We performed whole genome bisulfite sequencing (WGBS) on the sperm of genetically indistinguishable hatchery and wild-born migrating adults of Coho salmon (Oncorhynchus kisutch) from two geographically distant rivers at different epigenome scales. Our results showed that coupling WGBS with fine-scale analyses (local and chromosomal) allows the detection of parallel early-life hatchery-induced epimarks that differentiate wild from hatchery-reared salmon. Four chromosomes and 183 differentially methylated regions (DMRs) displayed a significant signal of methylation differentiation between hatchery and wild-born Coho salmon. Moreover, those early-life epimarks persisted in germ line cells despite about 1.5 year spent in the ocean following release from hatchery, opening the possibility for transgenerational inheritance. Our results strengthen the hypothesis that epigenomic modifications environmentally induced during early-life development persist in germ cells of adults until reproduction, which could potentially impact their fitness.

10.
J Hazard Mater ; 419: 126396, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171671

RESUMEN

Pearl-farming is the second most important source of income in French Polynesia. However, tropical lagoons are fragile ecosystems with regard to anthropogenic pressures like plastic pollution, which threaten marine life and the pearl oyster-related economy. Here, we investigated the spatial distribution of microplastics (MP) and concentrations in surface water (SW), water column (WC) and cultivated pearl oyster (PO) from three pearl-farming atolls with low population and tourism. Microplastics were categorized by their size class, shape, colour and polymer type identified using FTIR spectroscopy. Widespread MP contamination was observed in every study site (SW, 0.2-8.4 MP m-3; WC, 14.0-716.2 MP m-3; PO, 2.1-125.0 MP g-1 dry weight), with high contamination in the WC highlighting the need to study the vertical distribution of MP, especially as this compartment where PO are reared. A large presence of small (< 200 µm) and fragment-shaped (> 70%) MP suggests that they result from the breakdown of larger plastic debris. The most abundant polymer type was polyethylene in SW (34-39%), WC (24-32%), while in PO, polypropylene (14-20%) and polyethylene were more evenly distributed (9-21%). The most common MP identified as black-grey polyethylene and polypropylene matches the polymer and colour of ropes and collectors questioning a pearl-farming origin.


Asunto(s)
Pinctada , Contaminantes Químicos del Agua , Agricultura , Animales , Ecosistema , Monitoreo del Ambiente , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis
11.
G3 (Bethesda) ; 11(2)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33712817

RESUMEN

Genotype-by-environment (GxE) interactions are non-parallel reaction norms among individuals with different genotypes in response to different environmental conditions. GxE interactions are an extension of phenotypic plasticity and consequently studying such interactions improves our ability to predict effects of different environments on phenotype as well as the fitness of genetically distinct organisms and their capacity to interact with ecosystems. Growth hormone transgenic coho salmon grow much faster than non-transgenics when raised in tank environments, but show little difference in growth when reared in nature-like streams. We used this model system to evaluate potential mechanisms underlying this growth rate GxE interaction, performing RNA-seq to measure gene transcription and whole-genome bisulfite sequencing to measure gene methylation in liver tissue. Gene ontology (GO) term analysis revealed stress as an important biological process potentially influencing growth rate GxE interactions. While few genes with transcription differences also had methylation differences, in promoter or gene regions, many genes were differentially methylated between tank and stream environments. A GO term analysis of differentially methylated genes between tank and stream environments revealed increased methylation in the stream environment of more than 95% of the differentially methylated genes, many with biological processes unrelated to liver function. The lower nutritional condition of the stream environment may cause increased negative regulation of genes less vital for liver tissue function than when fish are reared in tanks with unlimited food availability. These data show a large effect of rearing environment both on gene expression and methylation, but it is less clear that the detected epigenetic marks are responsible for the observed altered growth and physiological responses.


Asunto(s)
Ecosistema , Oncorhynchus kisutch , Animales , Epigénesis Genética , Interacción Gen-Ambiente , Genotipo , Oncorhynchus kisutch/genética , Fenotipo , Transcriptoma
12.
BMC Genomics ; 21(1): 662, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32977773

RESUMEN

BACKGROUND: Albino mutations are commonly observed in the animal kingdom, including in bivalves. In the black-lipped pearl oyster Pinctada margaritifera, albino specimens are characterized by total or partial absence of colouration resulting in typical white shell phenotype expression. The relationship of shell colour with resulting cultured pearl colour is of great economic interest in P. margaritifera, on which a pearl industry is based. Hence, the albino phenotype provides a useful way to examine the molecular mechanisms underlying pigmentation. RESULTS: Whole transcriptome RNA-sequencing analysis comparing albino and black wild-type phenotypes at three stages over the culture cycle of P. margaritifera revealed a total of 1606, 798 and 187 differentially expressed genes in whole juvenile, adult mantle and pearl sac tissue, respectively. These genes were found to be involved in five main molecular pathways, tightly linked to known pigmentation pathways: melanogenesis, calcium signalling pathway, Notch signalling pathway, pigment transport and biomineralization. Additionally, significant phenotype-associated SNPs were selected (N = 159), including two located in the Pif biomineralization gene, which codes for nacre formation. Interestingly, significantly different transcript splicing was detected between juvenile (N = 1366) and adult mantle tissue (N = 313) in, e.g., the tyrosinase Tyr-1 gene, which showed more complex regulation in mantle, and the Notch1 encoding gene, which was upregulated in albino juveniles. CONCLUSION: This multiple RNA-seq approach provided new knowledge about genes associated with the P. margaritifera albino phenotype, highlighting: 1) new molecular pathways, such as the Notch signalling pathway in pigmentation, 2) associated SNP markers with biomineraliszation gene of interest like Pif for marker-assisted selection and prevention of inbreeding, and 3) alternative gene splicing for melanin biosynthesis implicating tyrosinase.


Asunto(s)
Melaninas/genética , Ostreidae/genética , Pigmentación , Transcriptoma , Exoesqueleto/crecimiento & desarrollo , Exoesqueleto/metabolismo , Animales , Señalización del Calcio , Melaninas/deficiencia , Melaninas/metabolismo , Ostreidae/crecimiento & desarrollo , Ostreidae/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , RNA-Seq , Receptores Notch/genética , Receptores Notch/metabolismo
13.
Environ Pollut ; 266(Pt 3): 115180, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32673975

RESUMEN

A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 µm) at 0.25, 2.5, and 25 µg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.


Asunto(s)
Pinctada , Animales , Metabolismo Energético , Microplásticos , Plásticos , Transcriptoma
14.
G3 (Bethesda) ; 10(6): 1929-1947, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32284313

RESUMEN

Understanding the genomic basis of adaptative intraspecific phenotypic variation is a central goal in conservation genetics and evolutionary biology. Lake trout (Salvelinus namaycush) are an excellent species for addressing the genetic basis for adaptive variation because they express a striking degree of ecophenotypic variation across their range; however, necessary genomic resources are lacking. Here we utilize recently-developed analytical methods and sequencing technologies to (1) construct a high-density linkage and centromere map for lake trout, (2) identify loci underlying variation in traits that differentiate lake trout ecophenotypes and populations, (3) determine the location of the lake trout sex determination locus, and (4) identify chromosomal homologies between lake trout and other salmonids of varying divergence. The resulting linkage map contains 15,740 single nucleotide polymorphisms (SNPs) mapped to 42 linkage groups, likely representing the 42 lake trout chromosomes. Female and male linkage group lengths ranged from 43.07 to 134.64 centimorgans, and 1.97 to 92.87 centimorgans, respectively. We improved the map by determining coordinates for 41 of 42 centromeres, resulting in a map with 8 metacentric chromosomes and 34 acrocentric or telocentric chromosomes. We use the map to localize the sex determination locus and multiple quantitative trait loci (QTL) associated with intraspecific phenotypic divergence including traits related to growth and body condition, patterns of skin pigmentation, and two composite geomorphometric variables quantifying body shape. Two QTL for the presence of vermiculations and spots mapped with high certainty to an arm of linkage group Sna3, growth related traits mapped to two QTL on linkage groups Sna1 and Sna12, and putative body shape QTL were detected on six separate linkage groups. The sex determination locus was mapped to Sna4 with high confidence. Synteny analysis revealed that lake trout and congener Arctic char (Salvelinus alpinus) are likely differentiated by three or four chromosomal fissions, possibly one chromosomal fusion, and 6 or more large inversions. Combining centromere mapping information with putative inversion coordinates revealed that the majority of detected inversions differentiating lake trout from other salmonids are pericentric and located on acrocentric and telocentric linkage groups. Our results suggest that speciation and adaptive divergence within the genus Salvelinus may have been associated with multiple pericentric inversions occurring primarily on acrocentric and telocentric chromosomes. The linkage map presented here will be a critical resource for advancing conservation oriented genomic research on lake trout and exploring chromosomal evolution within and between salmonid species.


Asunto(s)
Sitios de Carácter Cuantitativo , Trucha , Animales , Mapeo Cromosómico , Femenino , Ligamiento Genético , Masculino , Sintenía , Trucha/genética
15.
Glob Chang Biol ; 26(3): 1271-1284, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31692206

RESUMEN

Seawater temperature rise in French Polynesia has repeatedly resulted in the bleaching of corals and giant clams. Because giant clams possess distinctive ectosymbiotic features, they represent a unique and powerful model for comparing molecular pathways involved in (a) maintenance of symbiosis and (b) acquisition of thermotolerance among coral reef organisms. Herein, we explored the physiological and transcriptomic responses of the clam hosts and their photosynthetically active symbionts over a 65 day experiment in which clams were exposed to either normal or environmentally relevant elevated seawater temperatures. Additionally, we used metabarcoding data coupled with in situ sampling/survey data to explore the relative importance of holobiont adaptation (i.e., a symbiont community shift) versus acclimation (i.e., physiological changes at the molecular level) in the clams' responses to environmental change. We finally compared transcriptomic data to publicly available genomic datasets for Symbiodiniaceae dinoflagellates (both cultured and in hospite with the coral Pocillopora damicornis) to better tease apart the responses of both hosts and specific symbiont genotypes in this mutualistic association. Gene module preservation analysis revealed that the function of the symbionts' photosystem II was impaired at high temperature, and this response was also found across all holobionts and Symbiodiniaceae lineages examined. Similarly, epigenetic modulation appeared to be a key response mechanism for symbionts in hospite with giant clams exposed to high temperatures, and such modulation was able to distinguish thermotolerant from thermosensitive Cladocopium goreaui ecotypes; epigenetic processes may, then, represent a promising research avenue for those interested in coral reef conservation in this era of changing global climate.


Asunto(s)
Antozoos , Dinoflagelados , Aclimatación , Animales , Arrecifes de Coral , Polinesia , Simbiosis , Temperatura
16.
Mol Ecol ; 29(1): 86-104, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782579

RESUMEN

Islands are generally colonized by few individuals which could lead to a founder effect causing loss of genetic diversity and rapid divergence by strong genetic drift. Insular conditions can also induce new selective pressures on populations. Here, we investigated the extent of genetic differentiation within a white-tailed deer (Odocoileus virginianus) population introduced on an island and its differentiation with its source mainland population. In response to their novel environmental conditions, introduced deer changed phenotypically from mainland individuals, therefore we investigated the genetic bases of the morphological differentiation. The study was conducted on Anticosti Island (Québec, Canada) where 220 individuals were introduced 120 years ago, resulting in a population size over 160,000 individuals. We used genotyping-by-sequencing (GBS) to generate 8,518 filtered high-quality SNPs and compared patterns of genetic diversity and differentiation between the continental and Anticosti Island populations. Clustering analyses indicated a single panmictic island population and no sign of isolation by distance. Our results revealed a weak, albeit highly significant, genetic differentiation between the Anticosti Island population and its source population (mean FST  = 0.005), which allowed a population assignment success of 93%. Also, the high genetic diversity maintained in the introduced population supports the absence of a strong founder effect due to the large number of founders followed by rapid population growth. We further used a polygenic approach to assess the genetic bases of the divergent phenotypical traits between insular and continental populations. We found loci related to muscular function and lipid metabolism, which suggested that these could be involved in local adaptation on Anticosti Island. We discuss these results in a harvest management context.


Asunto(s)
Adaptación Biológica , Ciervos/genética , Flujo Genético , Variación Genética , Animales , Ciervos/fisiología , Ecología , Femenino , Masculino , Densidad de Población , Quebec
17.
Genes (Basel) ; 11(1)2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878110

RESUMEN

This special issue of Genes demonstrates clearly that research in epigenetics has proceeded at a very rapid pace in the last decade. [...].


Asunto(s)
Epigenómica/ética , Metilación de ADN/genética , Epigénesis Genética/genética , Humanos
18.
Evol Appl ; 12(5): 902-922, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31080504

RESUMEN

Understanding the genetic and evolutionary impacts of stocking on wild fish populations has long been of interest as negative consequences such as reduced fitness and loss of genetic diversity are commonly reported outcomes. In an attempt to sustain a fishery, managers implemented nearly five decades of extensive stocking of over a million Muskellunge (Esox masquinongy), a native species in the Lower St. Lawrence River (Québec, Canada). We investigated the effect of this stocking on population genetic structure and allelic diversity in the St. Lawrence River in addition to tributaries and several stocked inland lakes. Using genotype by sequencing, we genotyped 643 individuals representing 22 locations and combined this information with forward simulations to investigate the genetic consequences of long-term stocking. Individuals native to the St. Lawrence watershed were genetically differentiated from stocking sources and tributaries, and inland lakes were naturally differentiated from the main river. Empirical data and simulations within the St. Lawrence River revealed weak stocking effects on admixture patterns. Our data suggest that the genetic structure associated with stocked fish was diluted into its relatively large effective population size. This interpretation is also consistent with a hypothesis that selection against introgression was in operation and relatively efficient within the large St. Lawrence River system. In contrast, smaller populations from adjacent tributaries and lakes displayed greater stocking-related admixture that resulted in comparatively higher heterozygosity than the St. Lawrence. Finally, individuals from inland lakes that were established by stocking maintained a close affinity with their source populations. This study illustrated a benefit of combining extensive genomic data with forward simulations for improved inference regarding population-level genetic effects of long-term stocking, and its relevance for fishery management decision making.

19.
G3 (Bethesda) ; 9(1): 105-116, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30591433

RESUMEN

Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.


Asunto(s)
Domesticación , Músculos/metabolismo , Perciformes/genética , Transcriptoma/genética , Animales , Temperatura
20.
Evol Appl ; 11(5): 577-592, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29875804

RESUMEN

In fisheries management, intensive stocking programs are commonly used to enhance population abundance and maintain stock productivity. However, such practices are increasingly raising concerns as multiple studies documented adverse genetic and evolutionary impacts of stocking on wild populations. Improvement of stocking management relies on a better understanding of the dynamic of introgressive hybridization between wild and domestic population and on assessment of the genetic state of wild populations after stocking cessation. In Québec, Canada, over five million captive-reared Brook Charr (Salvelinus fontinalis) are stocked every year to support recreational fishing activities. Here, we investigated how variation in stocking history and environmental variables, including water temperature, pH, and dissolved oxygen, may influence the impact of stocking practices on the genetic integrity of wild Brook Charr populations. We collected DNA samples (n = 862, average of 30 individuals per lake) from 29 lakes that underwent different stocking intensity through time and also collected environmental parameters for each sampled lake. An average of 4,580 high-quality filtered SNPs was obtained for each population using genotyping by sequencing (GBS), which were then used to quantify the mean domestic membership of each sampled population. An exhaustive process of model selection was conducted to obtain a best-fitted model that explained 56% of the variance observed in mean domestic genetic membership. The number of years since the mean year of stocking was the best explanatory variable to predict variation in mean domestic genetic membership whereas environmental characteristics had little influence on observed patterns of admixture. Our model predictions also revealed that each sampled wild population could potentially return to a wild genetic state (absence of domestic genetic background) after stocking cessation. Overall, our study provides new insights on factors determining level of introgressive hybridization and suggests that stocking impacts could be reversible with time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA