Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(12): 126202, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37027885

RESUMEN

A scanning tunneling microscope is used to study the fluorescence of a model charged molecule (quinacridone) adsorbed on a sodium chloride (NaCl)-covered metallic sample. Fluorescence from the neutral and positively charged species is reported and imaged using hyperresolved fluorescence microscopy. A many-body model is established based on a detailed analysis of voltage, current, and spatial dependences of the fluorescence and electron transport features. This model reveals that quinacridone adopts a palette of charge states, transient or not, depending on the voltage used and the nature of the underlying substrate. This model has a universal character and clarifies the transport and fluorescence mechanisms of molecules adsorbed on thin insulators.

2.
Nano Lett ; 22(23): 9244-9251, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458911

RESUMEN

The photoluminescence (PL) of monolayer tungsten disulfide (WS2) is locally and electrically controlled using the nonplasmonic tip and tunneling current of a scanning tunneling microscope (STM). The spatial and spectral distribution of the emitted light is determined using an optical microscope. When the STM tip is engaged, short-range PL quenching due to near-field electromagnetic effects is present, independent of the sign and value of the bias voltage applied to the tip-sample tunneling junction. In addition, a bias-voltage-dependent long-range PL quenching is measured when the sample is positively biased. We explain these observations by considering the native n-doping of monolayer WS2 and the charge carrier density gradients induced by electron tunneling in micrometer-scale areas around the tip position. The combination of wide-field PL microscopy and charge carrier injection using an STM opens up new ways to explore the interplay between excitons and charge carriers in two-dimensional semiconductors.

3.
Opt Express ; 27(23): 33011-33026, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31878376

RESUMEN

A new single-image acquisition technique for the determination of the dispersion relation of the propagating modes of a plasmonic multilayer stack is introduced. This technique is based on an electrically-driven, spectrally broad excitation source which is nanoscale in size: the inelastic electron tunnel current between the tip of a scanning tunneling microscope (STM) and the sample. The resulting light from the excited modes of the system is collected in transmission using a microscope objective. The energy-momentum dispersion relation of the excited optical modes is then determined from the angle-resolved optical spectrum of the collected light. Experimental and theoretical results are obtained for metal-insulator-metal (MIM) stacks consisting of a silicon oxide layer (70, 190 or 310 nm thick) between two gold films (each with a thickness of 30 nm). The broadband characterization of hybrid plasmonic-photonic transverse magnetic (TM) modes involved in an avoided crossing is demonstrated and the advantages of this new technique over optical reflectivity measurements are evaluated.

4.
Phys Rev Lett ; 123(2): 027402, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31386496

RESUMEN

The long sought-after goal of locally and spectroscopically probing the excitons of two-dimensional (2D) semiconductors is attained using a scanning tunneling microscope (STM). Excitonic luminescence from monolayer molybdenum diselenide (MoSe_{2}) on a transparent conducting substrate is electrically excited in the tunnel junction of an STM under ambient conditions. By comparing the results with photoluminescence measurements, the emission mechanism is identified as the radiative recombination of bright A excitons. STM-induced luminescence is observed at bias voltages as low as those that correspond to the energy of the optical band gap of MoSe_{2}. The proposed excitation mechanism is resonance energy transfer from the tunneling current to the excitons in the semiconductor, i.e., through virtual photon coupling. Additional mechanisms (e.g., charge injection) may come into play at bias voltages that are higher than the electronic band gap. Photon emission quantum efficiencies of up to 10^{-7} photons per electron are obtained, despite the lack of any participating plasmons. Our results demonstrate a new technique for investigating the excitonic and optoelectronic properties of 2D semiconductors and their heterostructures at the nanometer scale.

5.
Beilstein J Nanotechnol ; 9: 2361-2371, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30254831

RESUMEN

We report on the low-energy, electrical generation of light beams in specific directions from planar elliptical microstructures. The emission direction of the beam is determined by the microstructure eccentricity. A very simple, broadband, optical antenna design is used, which consists of a single elliptical slit etched into a gold film. The light beam source is driven by an electrical nanosource of surface plasmon polaritons (SPP) that is located at one focus of the ellipse. In this study, SPPs are generated through inelastic electron tunneling between a gold surface and the tip of a scanning tunneling microscope.

6.
Opt Express ; 24(23): 26186-26200, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27857355

RESUMEN

Surface plasmon polariton (SPP) beams with an in-plane angular spread of 8° are produced by electrically exciting a 2D plasmonic crystal using a scanning tunneling microscope (STM). The plasmonic crystal consists of a gold nanoparticle (NP) array on a thin gold film on a glass substrate and it is the inelastic tunnel electrons (IET) from the STM that provide a localized and spectrally broadband SPP source. Surface waves on the gold film are shown to be essential for the coupling of the local, electrical excitation to the extended NP array, thus leading to the creation of SPP beams. A simple model of the scattering of SPPs by the array is used to explain the origin and direction of the generated SPP beams under certain conditions. In order to take into account the broadband spectrum of the source, calculations realized using finite-difference time-domain (FDTD) methods are obtained, showing that bandgaps for SPP propagation exist for certain wavelengths and indicating how changing the pitch of the NP array may enhance the SPP beaming effect.

7.
Opt Lett ; 39(23): 6679-82, 2014 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25490651

RESUMEN

The temporal coherence of propagating surface plasmons is investigated using a local, broadband plasmon source consisting of a scanning tunneling microscope. A variant of Young's experiment is performed using a sample consisting of a 200-nm-thick gold film perforated by two 1-µm-diameter holes (separated by 4 or 6 µm). The resulting interference fringes are studied as a function of hole separation and source bandwidth. From these experiments, we conclude that apart from plasmon decay in the metal, there is no further loss of plasmon coherence from propagation, scattering at holes, or other dephasing processes. As a result, the plasmon coherence time may be estimated from its spectral bandwidth.

8.
Nano Lett ; 13(9): 4198-205, 2013 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-23927672

RESUMEN

We report on the angular distribution, polarization, and spectrum of the light emitted from an electrically controlled nanoscale light source. This nanosource of light arises from the local, low-energy, electrical excitation of localized surface plasmons (LSP) on individual gold nanoparticles using a scanning tunneling microscope (STM). The gold nanoparticles (NP) are chemically synthesized truncated bitetrahedrons. The emitted light is collected through the transparent substrate and the emission characteristics (angular distribution, polarization, and spectrum) are analyzed. These three observables are found to strongly depend on the lateral position of the STM tip with respect to the triangular upper face of the gold NP. In particular, the resulting light emission changes orientation when the electrical excitation via the STM tip is moved from the base to the vertex of the triangular face. On the basis of the comparison of the experimental observations with an analytical dipole model and finite-difference time-domain (FDTD) calculations, we show that this behavior is linked to the selective excitation of the out-of-plane and in-plane dipolar LSP modes of the NP. This selective excitation is achieved through the lateral position of the tip with respect to the symmetry center of the NP.

9.
Opt Express ; 21(12): 13938-48, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23787583

RESUMEN

The scattering of electrically excited surface plasmon polaritons (SPPs) into photons at the edges of gold metal stripes is investigated. The SPPs are locally generated by the inelastic tunneling current of a scanning tunneling microscope (STM). The majority of the collected light arising from the scattering of SPPs at the stripe edges is emitted in the forward direction and is collected at large angle (close to the air-glass critical angle, θ(c)). A much weaker isotropic component of the scattered light gives rise to an interference pattern in the Fourier plane images, demonstrating that plasmons may be scattered coherently. An analysis of the interference pattern as a function of excitation position on the stripe is used to determine a value of 1.42 ± 0.18 for the relative plasmon wave vector (kSPP/k0) of the corresponding SPPs. From these results, we interpret the directional, large angle (θ~θ(c)) scattering to be mainly from plasmons on the air-gold interface, and the diffuse scattering forming interference fringes to be dominantly from plasmons on the gold-substrate interface.


Asunto(s)
Oro/química , Oro/efectos de la radiación , Microscopía de Túnel de Rastreo/métodos , Resonancia por Plasmón de Superficie/instrumentación , Resonancia por Plasmón de Superficie/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación
10.
Opt Lett ; 37(1): 85-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22212799

RESUMEN

Two-photon excitation provides efficient optical sectioning in three-dimensional fluorescence microscopy, independently of a confocal detection. In two-photon laser-scanning microscopy, the image resolution is governed by the volume of the excitation light spot, which is obtained by focusing the incident laser beam through the objective lens of the microscope. The light spot being strongly elongated along the optical axis, the axial resolution is much lower than the transverse one. In this Letter we show that it is possible to strongly reduce the axial size of the excitation spot by shaping the incident beam and using a mirror in place of a standard glass slide to support the sample. Provided that the contribution of sidelobes can be removed through deconvolution procedures, this approach should allow us to achieve similar axial and lateral resolution.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Fenómenos Ópticos
11.
J Opt Soc Am A Opt Image Sci Vis ; 28(8): 1586-94, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21811320

RESUMEN

Isotropic single-objective (ISO) microscopy is a recently proposed imaging technique that can theoretically exhibit the same axial and transverse resolutions as 4Pi microscopy while using a classical single-objective confocal microscope. This achievement is obtained by placing the sample on a mirror and shaping the illumination beam so that the interference of the incident and mirror-reflected fields yields a quasi-spherical spot. In this work, we model the image formation in the ISO fluorescence microscope and simulate its point spread function. Then, we describe the experimental implementation and discuss its practical difficulties.

12.
Phys Rev Lett ; 105(20): 203903, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21231235

RESUMEN

Focusing a light beam through a lens produces an anisotropic spot elongated along the optical axis, because the light comes from only one side of the focal point. Using the time-reversal concept, we show that isotropic focusing can be realized by placing a mirror after the focal point and shaping the incident beam. This idea is applied to confocal microscopy and brings about a dramatic improvement of the axial resolution.

13.
Nanotechnology ; 20(22): 225502, 2009 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-19436093

RESUMEN

Although fluorescence is the prevailing labeling technique in biosensing applications, sensitivity improvement is still a striving challenge. We show that coating standard microscope slides with nanoroughened silver films provides a high fluorescence signal enhancement due to plasmonic interactions. As a proof of concept, we applied these films with tailored plasmonic properties to DNA microarrays. Using common optical scanning devices, we achieved signal amplifications of more than 40-fold.


Asunto(s)
Técnicas Biosensibles/métodos , Nanotecnología/métodos , Resonancia por Plasmón de Superficie , Carbocianinas/química , Fluorescencia , Colorantes Fluorescentes/química , Microscopía de Fuerza Atómica , Distribución Normal , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Rodaminas/química , Sensibilidad y Especificidad , Plata/química , Propiedades de Superficie
14.
J Biomed Opt ; 12(2): 024030, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17477745

RESUMEN

Fluorescence microscopy has become the method of choice in the majority of life-science applications. We describe development and use of mirror slides to significantly enhance the fluorescence signal using standard air microscope objectives. This technique offers sufficient gain to achieve high-sensitivity imaging, together with wide field of observation and large depth of focus, two major breakthroughs for routine analysis and high-throughput screening applications on cells and tissue samples.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Aumento de la Imagen/instrumentación , Lentes , Microscopía Fluorescente/instrumentación , Técnicas de Cultivo de Célula/métodos , Diseño de Equipo , Análisis de Falla de Equipo , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA