Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 37
1.
Mol Ecol ; 32(22): 5944-5958, 2023 Nov.
Article En | MEDLINE | ID: mdl-37815414

Next-generation biomonitoring proposes to combine machine-learning algorithms with environmental DNA data to automate the monitoring of the Earth's major ecosystems. In the present study, we searched for molecular biomarkers of tree water status to develop next-generation biomonitoring of forest ecosystems. Because phyllosphere microbial communities respond to both tree physiology and climate change, we investigated whether environmental DNA data from tree phyllosphere could be used as molecular biomarkers of tree water status in forest ecosystems. Using an amplicon sequencing approach, we analysed phyllosphere microbial communities of four tree species (Quercus ilex, Quercus robur, Pinus pinaster and Betula pendula) in a forest experiment composed of irrigated and non-irrigated plots. We used these microbial community data to train a machine-learning algorithm (Random Forest) to classify irrigated and non-irrigated trees. The Random Forest algorithm detected tree water status from phyllosphere microbial community composition with more than 90% accuracy for oak species, and more than 75% for pine and birch. Phyllosphere fungal communities were more informative than phyllosphere bacterial communities in all tree species. Seven fungal amplicon sequence variants were identified as candidates for the development of molecular biomarkers of water status in oak trees. Altogether, our results show that microbial community data from tree phyllosphere provides information on tree water status in forest ecosystems and could be included in next-generation biomonitoring programmes that would use in situ, real-time sequencing of environmental DNA to help monitor the health of European temperate forest ecosystems.


DNA, Environmental , Microbiota , Pinus , Biological Monitoring , Betula , Microbiota/genetics
2.
BMC Plant Biol ; 23(1): 108, 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36814198

BACKGROUND: Global warming raises serious concerns about the persistence of species and populations locally adapted to their environment, simply because of the shift it produces in their adaptive landscape. For instance, the phenological cycle of tree species may be strongly affected by higher winter temperatures and late frost in spring. Given the variety of ecosystem services they provide, the question of forest tree adaptation has received increasing attention in the scientific community and catalyzed research efforts in ecology, evolutionary biology and functional genomics to study their adaptive capacity to respond to such perturbations. RESULTS: In the present study, we used an elevation gradient in the Pyrenees Mountains to explore the gene expression network underlying dormancy regulation in natural populations of sessile oak stands sampled along an elevation cline and potentially adapted to different climatic conditions mainly driven by temperature. By performing analyses of gene expression in terminal buds we identified genes displaying significant dormancy, elevation or dormancy-by-elevation interaction effects. Our Results highlighted that low- and high-altitude populations have evolved different molecular strategies for minimizing late frost damage and maximizing the growth period, thereby increasing potentially their respective fitness in these contrasting environmental conditions. More particularly, population from high elevation overexpressed genes involved in the inhibition of cell elongation and delaying flowering time while genes involved in cell division and flowering, enabling buds to flush earlier were identified in population from low elevation. CONCLUSION: Our study made it possible to identify key dormancy-by-elevation responsive genes revealing that the stands analyzed in this study have evolved distinct molecular strategies to adapt their bud phenology in response to temperature.


Quercus , Quercus/genetics , Ecosystem , Temperature , Seasons , Forests , Trees
3.
Plant Physiol ; 190(4): 2466-2483, 2022 11 28.
Article En | MEDLINE | ID: mdl-36066428

Drought and waterlogging impede tree growth and may even lead to tree death. Oaks, an emblematic group of tree species, have evolved a range of adaptations to cope with these constraints. The two most widely distributed European species, pedunculate (PO; Quercus robur L.) and sessile oak (SO; Quercus petraea Matt. Lieb), have overlapping ranges, but their respective distribution are highly constrained by local soil conditions. These contrasting ecological preferences between two closely related and frequently hybridizing species constitute a powerful model to explore the functional bases of the adaptive responses in oak. We exposed oak seedlings to waterlogging and drought, conditions typically encountered by the two species in their respective habitats, and studied changes in gene expression in roots using RNA-seq. We identified genes that change in expression between treatments differentially depending on species. These "species × environment"-responsive genes revealed adaptive molecular strategies involving adventitious and lateral root formation, aerenchyma formation in PO, and osmoregulation and ABA regulation in SO. With this experimental design, we also identified genes with different expression between species independently of water conditions imposed. Surprisingly, this category included genes with functions consistent with a role in intrinsic reproductive barriers. Finally, we compared our findings with those for a genome scan of species divergence and found that the expressional candidate genes included numerous highly differentiated genetic markers between the two species. By combining transcriptomic analysis, gene annotation, pathway analyses, as well as genome scan for genetic differentiation among species, we were able to highlight loci likely involved in adaptation of the two species to their respective ecological niches.


Quercus , Quercus/genetics , Water/metabolism , Soil , Trees/metabolism , Gene Expression
4.
Tree Physiol ; 42(12): 2546-2562, 2022 Dec 12.
Article En | MEDLINE | ID: mdl-35867420

Water use efficiency (WUE) is an important adaptive trait for soil water deficit. The molecular and physiological bases of WUE regulation in crops have been studied in detail in the context of plant breeding. Knowledge for most forest tree species lags behind, despite the need to identify populations or genotypes able to cope with the longer, more intense drought periods likely to result from climate warming. We aimed to bridge this gap in knowledge for sessile oak (Quercus petraea (Matt.) Liebl.), one of the most ecologically and economically important tree species in Europe, using a factorial design including trees with contrasted phenotypic values (low and high WUE) and two watering regimes (control and drought). By monitoring the ecophysiological response, we first qualified genotypes for their WUE (by using instantaneous and long-term measures). We then performed RNA-seq to quantify gene expression for the three most extreme genotypes exposed to the two watering regimes. By analyzing the interaction term, we were able to capture the molecular strategy of each group of plants for coping with drought. We identified putative candidate genes potentially involved in the regulation of transpiration rate in high-WUE phenotypes. Regardless of water availability, trees from the high-WUE phenotypic class overexpressed genes associated with drought responses, and in the control of stomatal density and distribution, and displayed a downregulation of genes associated with early stomatal closure and high transpiration rate. Fine physiological screening of sessile oaks with contrasting WUE, and their molecular characterization (i) highlighted subtle differences in transcription between low- and high-WUE genotypes, identifying key molecular players in the genetic control of this trait and (ii) revealed the genes underlying the molecular strategy that evolved in each group to potentially cope with water deficit, providing new insight into the within-species diversity in drought adaptation strategies.


Quercus , Quercus/physiology , Water/metabolism , Soil , Droughts , Trees/genetics
5.
Mol Ecol ; 30(20): 5029-5047, 2021 10.
Article En | MEDLINE | ID: mdl-34383353

High genetic variation and extensive gene flow may help forest trees with adapting to ongoing climate change, yet the genetic bases underlying their adaptive potential remain largely unknown. We investigated range-wide patterns of potentially adaptive genetic variation in 64 populations of European beech (Fagus sylvatica L.) using 270 SNPs from 139 candidate genes involved either in phenology or in stress responses. We inferred neutral genetic structure and processes (drift and gene flow) and performed differentiation outlier analyses and gene-environment association (GEA) analyses to detect signatures of divergent selection. Beech range-wide genetic structure was consistent with the species' previously identified postglacial expansion scenario and recolonization routes. Populations showed high diversity and low differentiation along the major expansion routes. A total of 52 loci were found to be putatively under selection and 15 of them turned up in multiple GEA analyses. Temperature and precipitation related variables were equally represented in significant genotype-climate associations. Signatures of divergent selection were detected in the same proportion for stress response and phenology-related genes. The range-wide adaptive genetic structure of beech appears highly integrated, suggesting a balanced contribution of phenology and stress-related genes to local adaptation, and of temperature and precipitation regimes to genetic clines. Our results imply a best-case scenario for the maintenance of high genetic diversity during range shifts in beech (and putatively other forest trees) with a combination of gene flow maintaining within-population neutral diversity and selection maintaining between-population adaptive differentiation.


Fagus , Adaptation, Physiological , Climate Change , Fagus/genetics , Genetic Variation , Temperature , Trees
6.
Front Genet ; 12: 691058, 2021.
Article En | MEDLINE | ID: mdl-35211148

The European Beech is the dominant climax tree in most regions of Central Europe and valued for its ecological versatility and hardwood timber. Even though a draft genome has been published recently, higher resolution is required for studying aspects of genome architecture and recombination. Here, we present a chromosome-level assembly of the more than 300 year-old reference individual, Bhaga, from the Kellerwald-Edersee National Park (Germany). Its nuclear genome of 541 Mb was resolved into 12 chromosomes varying in length between 28 and 73 Mb. Multiple nuclear insertions of parts of the chloroplast genome were observed, with one region on chromosome 11 spanning more than 2 Mb which fragments up to 54,784 bp long and covering the whole chloroplast genome were inserted randomly. Unlike in Arabidopsis thaliana, ribosomal cistrons are present in Fagus sylvatica only in four major regions, in line with FISH studies. On most assembled chromosomes, telomeric repeats were found at both ends, while centromeric repeats were found to be scattered throughout the genome apart from their main occurrence per chromosome. The genome-wide distribution of SNPs was evaluated using a second individual from Jamy Nature Reserve (Poland). SNPs, repeat elements and duplicated genes were unevenly distributed in the genomes, with one major anomaly on chromosome 4. The genome presented here adds to the available highly resolved plant genomes and we hope it will serve as a valuable basis for future research on genome architecture and for understanding the past and future of European Beech populations in a changing climate.

8.
Sci Data ; 7(1): 1, 2020 01 02.
Article En | MEDLINE | ID: mdl-31896794

The dataset presented here was collected by the GenTree project (EU-Horizon 2020), which aims to improve the use of forest genetic resources across Europe by better understanding how trees adapt to their local environment. This dataset of individual tree-core characteristics including ring-width series and whole-core wood density was collected for seven ecologically and economically important European tree species: silver birch (Betula pendula), European beech (Fagus sylvatica), Norway spruce (Picea abies), European black poplar (Populus nigra), maritime pine (Pinus pinaster), Scots pine (Pinus sylvestris), and sessile oak (Quercus petraea). Tree-ring width measurements were obtained from 3600 trees in 142 populations and whole-core wood density was measured for 3098 trees in 125 populations. This dataset covers most of the geographical and climatic range occupied by the selected species. The potential use of it will be highly valuable for assessing ecological and evolutionary responses to environmental conditions as well as for model development and parameterization, to predict adaptability under climate change scenarios.


Trees/growth & development , Wood , Betula , Climate Change , Europe , Fagus , Forests , Picea , Pinus , Populus , Quercus
9.
New Phytol ; 226(4): 1183-1197, 2020 05.
Article En | MEDLINE | ID: mdl-31264219

Oaks are dominant forest tree species widely distributed across the Northern Hemisphere, where they constitute natural resources of economic, ecological, social and historical value. Hybridisation and adaptive introgression have long been thought to be major drivers of their ecological success. Therefore, the maintenance of species barriers remains a key question, given the extent of interspecific gene flow. In this study, we made use of the tremendous genetic variation among four European white oak species (31 million single nucleotide polymorphisms (SNPs)) to infer the evolutionary history of these species, study patterns of genetic differentiation and identify reproductive barriers. We first analysed the ecological and historical relationships among these species and inferred a long-term strict isolation followed by a recent and extensive postglacial contact using approximate Bayesian computation. Assuming this demographic scenario, we then performed backward simulations to generate the expected distributions of differentiation under neutrality to scan their genomes for reproductive barriers. We finally identified important intrinsic and ecological functions driving the reproductive isolation. We discussed the importance of identifying the genetic basis for the ecological preferences between these oak species and its implications for the renewal of European forests under global warming.


Gene Flow , Quercus , Bayes Theorem , Genetic Speciation , Hybridization, Genetic , Quercus/genetics
10.
New Phytol ; 226(4): 1171-1182, 2020 05.
Article En | MEDLINE | ID: mdl-31394003

Latitudinal and elevational gradients provide valuable experimental settings for studies of the potential impact of global warming on forest tree species. The availability of long-term phenological surveys in common garden experiments for traits associated with climate, such as bud flushing for sessile oaks (Quercus petraea), provide an ideal opportunity to investigate this impact. We sequenced 18 sessile oak populations and used available sequencing data for three other closely related European white oak species (Quercus pyrenaica, Quercus pubescens, and Quercus robur) to explore the evolutionary processes responsible for shaping the genetic variation across latitudinal and elevational gradients in extant sessile oaks. We used phenotypic surveys in common garden experiments and climatic data for the population of origin to perform genome-wide scans for population differentiation and genotype-environment and genotype-phenotype associations. The inferred historical relationships between Q. petraea populations suggest that interspecific gene flow occurred between Q. robur and Q. petraea populations from cooler or wetter areas. A genome-wide scan of differentiation between Q. petraea populations identified single nucleotide polymorphisms (SNPs) displaying strong interspecific relative divergence between these two species. These SNPs followed genetic clines along climatic or phenotypic gradients, providing further support for the likely contribution of introgression to the adaptive divergence of Q. petraea populations. Overall, the results indicate that outliers and associated SNPs are Q. robur ancestry-informative. We discuss the results of this study in the framework of the postglacial colonization scenario, in which introgression and diversifying selection have been proposed as essential drivers of Q. petraea microevolution.


Quercus , Adaptation, Physiological/genetics , Biological Evolution , Gene Flow , Genotype , Quercus/genetics
11.
Nat Plants ; 4(7): 440-452, 2018 07.
Article En | MEDLINE | ID: mdl-29915331

Oaks are an important part of our natural and cultural heritage. Not only are they ubiquitous in our most common landscapes1 but they have also supplied human societies with invaluable services, including food and shelter, since prehistoric times2. With 450 species spread throughout Asia, Europe and America3, oaks constitute a critical global renewable resource. The longevity of oaks (several hundred years) probably underlies their emblematic cultural and historical importance. Such long-lived sessile organisms must persist in the face of a wide range of abiotic and biotic threats over their lifespans. We investigated the genomic features associated with such a long lifespan by sequencing, assembling and annotating the oak genome. We then used the growing number of whole-genome sequences for plants (including tree and herbaceous species) to investigate the parallel evolution of genomic characteristics potentially underpinning tree longevity. A further consequence of the long lifespan of trees is their accumulation of somatic mutations during mitotic divisions of stem cells present in the shoot apical meristems. Empirical4 and modelling5 approaches have shown that intra-organismal genetic heterogeneity can be selected for6 and provides direct fitness benefits in the arms race with short-lived pests and pathogens through a patchwork of intra-organismal phenotypes7. However, there is no clear proof that large-statured trees consist of a genetic mosaic of clonally distinct cell lineages within and between branches. Through this case study of oak, we demonstrate the accumulation and transmission of somatic mutations and the expansion of disease-resistance gene families in trees.


Genome, Plant/genetics , Quercus/genetics , Biological Evolution , DNA, Plant/genetics , Genetic Variation/genetics , Longevity/genetics , Mutation , Phylogeny , Sequence Analysis, DNA
12.
Front Plant Sci ; 9: 1799, 2018.
Article En | MEDLINE | ID: mdl-30619389

Woody perennial angiosperms (i.e., hardwood trees) are polyphyletic in origin and occur in most angiosperm orders. Despite their independent origins, hardwoods have shared physiological, anatomical, and life history traits distinct from their herbaceous relatives. New high-throughput DNA sequencing platforms have provided access to numerous woody plant genomes beyond the early reference genomes of Populus and Eucalyptus, references that now include willow and oak, with pecan and chestnut soon to follow. Genomic studies within these diverse and undomesticated species have successfully linked genes to ecological, physiological, and developmental traits directly. Moreover, comparative genomic approaches are providing insights into speciation events while large-scale DNA resequencing of native collections is identifying population-level genetic diversity responsible for variation in key woody plant biology across and within species. Current research is focused on developing genomic prediction models for breeding, defining speciation and local adaptation, detecting and characterizing somatic mutations, revealing the mechanisms of gender determination and flowering, and application of systems biology approaches to model complex regulatory networks underlying quantitative traits. Emerging technologies such as single-molecule, long-read sequencing is being employed as additional woody plant species, and genotypes within species, are sequenced, thus enabling a comparative ("evo-devo") approach to understanding the unique biology of large woody plants. Resource availability, current genomic and genetic applications, new discoveries and predicted future developments are illustrated and discussed for poplar, eucalyptus, willow, oak, chestnut, and pecan.

13.
Tree Physiol ; 36(11): 1330-1342, 2016 11.
Article En | MEDLINE | ID: mdl-27358207

Waterlogging causes stressful conditions for perennial species. The temporary overabundance of water in waterlogged soil can induce hypoxia in the rhizosphere, leading to root death, tree decline and even dieback. Two closely related members of the European white oak complex, pedunculate (Quercus robur L.) and sessile (Quercus petraea Matt. Liebl.) oaks, have different ecological characteristics, especially regarding their adaptation to soil waterlogging. The tolerance of waterlogging observed in pedunculate oak is driven principally by its ability to produce adaptive structures, hypertrophied lenticels and adventitious roots, and to switch rapidly its metabolism to the fermentative pathway. This study had two objectives: (i) to identify genes important for adaptation to waterlogging and (ii) to gain insight into the molecular mechanisms involved in hypertrophied lenticel formation in pedunculate oak. We subjected seedlings of the two species to hypoxia by maintaining the water level 2 cm above the collar. The immersed part of the stem (i.e., containing hypertrophied lenticels in pedunculate oak) was sampled after 9 days of waterlogging stress and its gene expression was investigated by RNA-seq. Genes displaying differential expression between the two species were identified with the DESeq R package and a false discovery rate of 0.001. We found that 3705 contigs were differentially regulated between the two species. Twenty-two differentially expressed genes were validated by real-time quantitative polymerase chain reaction. The suberin biosynthesis pathway was found to be upregulated in pedunculate oak, consistent with molecular mechanisms analogous to those operating in the radial oxygen loss barrier in waterlogging-tolerant species.


Adaptation, Physiological , Lipids , Quercus/metabolism , Trees/metabolism , Water/metabolism , Adaptation, Physiological/genetics , Fermentation , Genes, Plant , Plant Roots/metabolism , Plant Stems/metabolism , Quercus/genetics , Species Specificity , Trees/genetics
14.
Mol Ecol Resour ; 16(1): 377, 2016 Jan.
Article En | MEDLINE | ID: mdl-26768197

This article documents the public availability of transcriptomic resources for (i) the Hazelnut tree (Corylus avellana L.) and (ii) the oriental rat flea and primary plague vector, Xenopsylla cheopis.


Corylus/genetics , Xenopsylla/genetics , Animals , Genomics , Transcriptome
15.
Mol Ecol Resour ; 16(1): 254-65, 2016 Jan.
Article En | MEDLINE | ID: mdl-25944057

The 1.5 Gbp/2C genome of pedunculate oak (Quercus robur) has been sequenced. A strategy was established for dealing with the challenges imposed by the sequencing of such a large, complex and highly heterozygous genome by a whole-genome shotgun (WGS) approach, without the use of costly and time-consuming methods, such as fosmid or BAC clone-based hierarchical sequencing methods. The sequencing strategy combined short and long reads. Over 49 million reads provided by Roche 454 GS-FLX technology were assembled into contigs and combined with shorter Illumina sequence reads from paired-end and mate-pair libraries of different insert sizes, to build scaffolds. Errors were corrected and gaps filled with Illumina paired-end reads and contaminants detected, resulting in a total of 17,910 scaffolds (>2 kb) corresponding to 1.34 Gb. Fifty per cent of the assembly was accounted for by 1468 scaffolds (N50 of 260 kb). Initial comparison with the phylogenetically related Prunus persica gene model indicated that genes for 84.6% of the proteins present in peach (mean protein coverage of 90.5%) were present in our assembly. The second and third steps in this project are genome annotation and the assignment of scaffolds to the oak genetic linkage map. In accordance with the Bermuda and Fort Lauderdale agreements and the more recent Toronto Statement, the oak genome data have been released into public sequence repositories in advance of publication. In this presubmission paper, the oak genome consortium describes its principal lines of work and future directions for analyses of the nature, function and evolution of the oak genome.


Genome, Plant , Quercus/genetics , Models, Genetic , Molecular Sequence Annotation , Phylogeny , Quercus/classification , Sequence Analysis, DNA
16.
BMC Genomics ; 16: 112, 2015 Feb 21.
Article En | MEDLINE | ID: mdl-25765701

BACKGROUND: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic toolbox is an important asset for exploring the functional variation associated with natural selection. RESULTS: The assembly of previously available and newly developed long and short sequence reads for two sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships, making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their phenology to the environment. CONCLUSION: In addition to providing a vast array of expressed genes, this study generated essential information about oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for forward genetics approaches aiming to link genotypes with adaptive phenotypes.


Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Plant Dormancy/genetics , Transcriptome/genetics , Base Sequence , Chromosome Mapping , Genetic Speciation , Genome, Plant , Quercus/genetics , Quercus/growth & development , Sequence Analysis, RNA
17.
Mol Ecol Resour ; 15(5): 1192-204, 2015 Sep.
Article En | MEDLINE | ID: mdl-25594128

Systematic sequencing is the method of choice for generating genomic resources for molecular marker development and candidate gene identification in nonmodel species. We generated 47,357 Sanger ESTs and 2.2M Roche-454 reads from five cDNA libraries for European beech (Fagus sylvatica L.). This tree species of high ecological and economic value in Europe is among the most representative trees of deciduous broadleaf forests. The sequences generated were assembled into 21,057 contigs with MIRA software. Functional annotations were obtained for 85% of these contigs, from the proteomes of four plant species, Swissprot accessions and the Gene Ontology database. We were able to identify 28,079 in silico SNPs for future marker development. Moreover, RNAseq and qPCR approaches identified genes and gene networks regulated differentially between two critical phenological stages preceding vegetative bud burst (the quiescent and swelling buds stages). According to climatic model-based projection, some European beech populations may be endangered, particularly at the southern and eastern edges of the European distribution range, which are strongly affected by current climate change. This first genomic resource for the genus Fagus should facilitate the identification of key genes for beech adaptation and management strategies for preserving beech adaptability.


Fagus/genetics , Fagus/physiology , Gene Expression Regulation, Plant , Genetic Association Studies , Plant Dormancy , Europe , Expressed Sequence Tags , Gene Expression Profiling , Gene Library , Gene Ontology , Molecular Sequence Annotation , Molecular Sequence Data , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
18.
Tree Physiol ; 34(11): 1263-77, 2014 Nov.
Article En | MEDLINE | ID: mdl-24614303

Secondary xylem (wood) is formed through an intricate biological process that results in a highly variable final product. Studies have focused on understanding the molecular events for wood formation in conifers. In this process environmental, ontogenic and genetic factors influence variation in wood characteristics, including anatomical, chemical and physical properties. The main objective of this study was to analyse the ageing (ontogenic) effect on protein accumulation in wood-forming tissues along a cambial age (CA) gradient, ranging from juvenile wood (JW) sampled at the top of the tree, to mature wood (MW) sampled at the bottom of the tree. A total of 62 proteins whose accumulation varied by at least 1.5-fold according to CA were selected and identified by ESI-MS/MS; 30 of these were more abundant in MW and 32 were more abundant in JW. Consistent with earlier findings, our results show that JW is a tissue characterized by a high energy demand with the accumulation of gene products involved in energy, protein fate and cellular transport, while proteins identified in MW (heat shock response, oxygen and radical detoxification, and the S-adenosyl methionine cycle) support the idea that this tissue undergoes extended cell-wall thickening and a delay of programmed cell death.


Pinus/metabolism , Plant Proteins/isolation & purification , Proteomics , Xylem/metabolism , Cell Death , Cell Wall/metabolism , Cluster Analysis , Electrophoresis, Gel, Two-Dimensional , Pinus/growth & development , Plant Proteins/classification , Plant Proteins/metabolism , Proteome , Tandem Mass Spectrometry , Trees , Wood/growth & development , Wood/metabolism , Xylem/growth & development
19.
Plant Biotechnol J ; 12(3): 286-99, 2014 Apr.
Article En | MEDLINE | ID: mdl-24256179

Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species.


Biotechnology , Genome, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Pinus/genetics , Polymorphism, Single Nucleotide , Transcriptome , Breeding , DNA, Complementary/genetics , Databases, Genetic , Genome Size , Genotype , Microsatellite Repeats/genetics , Molecular Sequence Annotation , Multigene Family , RNA, Plant/genetics , Sequence Analysis, DNA , Transcription Factors/genetics , Trees
20.
BMC Plant Biol ; 13: 95, 2013 Jul 01.
Article En | MEDLINE | ID: mdl-23815794

BACKGROUND: The cuticle is a hydrophobic barrier located at the aerial surface of all terrestrial plants. Recent studies performed on model plants, such as Arabidopsis thaliana, have suggested that the cuticle may be involved in drought stress adaptation, preventing non-stomatal water loss. Although forest trees will face more intense drought stresses (in duration and intensity) with global warming, very few studies on the role of the cuticle in drought stress adaptation in these long-lived organisms have been so far reported. RESULTS: This aspect was investigated in a conifer, maritime pine (Pinus pinaster Ait.), in a factorial design with two genetic units (two half-sib families with different growth rates) and two treatments (irrigated vs non-irrigated), in field conditions. Saplings were grown in an open-sided greenhouse and half were irrigated three times per week for two growing seasons. Needles were sampled three times per year for cuticular wax (composition and content) and transcriptome (of 11 genes involved in cuticle biosynthesis) analysis. Non-irrigated saplings (i) had a higher cuticular wax content than irrigated saplings and (ii) overexpressed most of the genes studied. Both these trends were more marked in the faster growing family. CONCLUSIONS: The higher cuticular wax content observed in the non-irrigated treatment associated with strong modifications in products from the decarbonylation pathway suggest that cuticular wax may be involved in drought stress adaptation in maritime pine. This study provides also a set of promising candidate genes for future forward genetic studies in conifers.


Pinus/metabolism , Plant Proteins/genetics , Water/metabolism , Waxes/metabolism , Droughts , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Pinus/genetics , Pinus/growth & development , Plant Proteins/metabolism , Soil/analysis , Water/analysis , Waxes/chemistry
...