Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 59
1.
PLoS One ; 17(11): e0277564, 2022.
Article En | MEDLINE | ID: mdl-36378686

Shiga toxin-producing Escherichia coli (STEC) is estimated to cause over two million cases of human disease annually. Trinidad and Tobago is one of the largest livestock producer and consumer of sheep and goat meat in the Caribbean, however, the potential role of these animals in the epidemiology of STEC infections has not been previously described. To fill this critical gap in knowledge, the prevalence of Shiga toxin genes (stx1 and stx2) shed in the faeces of healthy sheep (n = 204) and goats (n = 105) in Trinidad was investigated. Based on PCR screening, goats had a higher stx prevalence than sheep (46% vs 35%, P = 0.06). Most of the recovered STEC isolates were positive for stx1 only; and only three isolates were positive for the eae gene. None of the recovered isolates belonged to the O157 serogroup. In both species, the prevalence of stx was higher in young animals versus older animals. Sheep reared on deep litter flooring (43%) had a higher prevalence than sheep reared other flooring types, however this was not the same for goats. The presence of cows on the same premise was not an associated predictor for STEC carriage in sheep or goats. This study demonstrates that although sheep and goats in Trinidad are reservoirs for stx-positive E. coli isolates, no fecal samples tested positive for O157 STEC, harbored. Furthermore, it appears that non-O157 stx-positive isolates harbored by these animals do not pose a significant threat to human health.


Escherichia coli Infections , Escherichia coli Proteins , Shiga-Toxigenic Escherichia coli , Humans , Female , Sheep , Animals , Cattle , Shiga Toxin/genetics , Goats , Trinidad and Tobago/epidemiology , Serogroup , Virulence Factors/genetics , Shiga-Toxigenic Escherichia coli/genetics , Escherichia coli Infections/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli Proteins/genetics
2.
Microorganisms ; 10(4)2022 Mar 23.
Article En | MEDLINE | ID: mdl-35456741

Subtyping of bacterial isolates of the same genus and species is an important tool in epidemiological investigations. A number of phenotypic and genotypic subtyping methods are available; however, most of these methods are labor-intensive and time-consuming and require considerable operator skill and a wealth of reagents. Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF), an alternative to conventional subtyping methods, offers a rapid, reproducible method for bacterial identification with a high sensitivity and specificity and at minimal cost. The purpose of this study was to determine the feasibility of using MALDI-TOF to differentiate between six Salmonella serovars recovered from experimental microcosms inoculated with known strains of Salmonella. Following the establishment of a MALDI-TOF reference library for this project, the identity of 843 Salmonella isolates recovered from these microcosms was assessed using both MALDI-TOF and conventional methods (serotyping/PCR). All 843 isolates were identified as being Salmonella species. Overall, 803/843 (95%) of these isolates were identified similarly using the two different methods. Positive percent agreement at the serovar level ranged from 79 to 100%, and negative percent agreement for all serovars was greater than 98%. Cohen's kappa ranged from 0.85 to 0.98 for the different serovars. This study demonstrates that MALDI-TOF is a viable alternative for the rapid identification and differentiation of Salmonella serovars.

3.
Ecohealth ; 18(3): 288-296, 2021 09.
Article En | MEDLINE | ID: mdl-34609648

The changing epidemiologic role of wildlife as reservoirs of antimicrobial-resistant bacteria (ARB) is poorly understood. In this study, we characterize the phenotypic resistance of commensal Escherichia coli from fecal samples of 879 individual white-tailed (Odocoileus virginianus; WTD) over a ten-year period and analyze resistance patterns. Our results show commensal E. coli from WTD had significant linear increases in reduced susceptibility to 5 of 12 antimicrobials, including broad-spectrum cephalosporins and fluoroquinolones, from 2006 to 2016. In addition, the relative frequency distribution of minimal inhibitory concentrations of two additional antimicrobials shifted towards higher values from across the study period. The prevalence of multidrug-resistant commensal E. coli increased over the study period with a prevalence of 0%, 2.2%, and 3.7% in 2006, 2012, and 2016, respectively. WTD may be persistently and increasingly exposed to antibiotics or their residues, ARB, and/or antimicrobial resistance genes via contaminated environments like surface water receiving treated wastewater effluent.


Anti-Infective Agents , Deer , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Deer/microbiology , Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Feces/microbiology
4.
Foods ; 10(8)2021 Aug 13.
Article En | MEDLINE | ID: mdl-34441650

Since the late 1990s, the Food and Agriculture Organization (FAO) of the United Nations and the World Health Organization (WHO) has convened expert meetings and consultations to address the microbiological risk assessment (MRA). These meetings are held to provide scientific advice in response to requests for from Codex Alimentarius, the international food standard-setting body. Individuals participate in the FAO/WHO joint expert meetings on the microbiological risk assessment (JEMRA) in their personal capacity, as technical experts, yet bring diverse regional and national perspectives that contribute to practical applications, particularly for low- and middle-income countries (LMICs). Over 370 experts from around the globe have contributed to the meeting outcomes that have been published in nearly 40 monographs in the FAO/WHO microbial risk assessment (MRA) series, addressing particular food commodities with microbial hazard(s) combinations or a methodological aspect of microbial risk assessment. FAO/WHO MRA series inform Codex decision-making for the development of international standards for safe food and faire trade in food products; are consulted by risk managers such as food safety authorities and food business operators to make science-based decisions; and are used by academics to advance food safety research and educate the next generation of food safety professionals.

6.
Sci Rep ; 10(1): 10174, 2020 06 23.
Article En | MEDLINE | ID: mdl-32576851

This research study was conducted to determine if bird depredation in feedlots is associated with the prevalence of ciprofloxacin-resistant Escherichia coli in cattle and to determine if removal of invasive bird species could be an effective management strategy to help reduce ciprofloxacin-resistant E. coli in cattle within the United States. European starlings (Sturnus vulgaris) were collected from feedlots within multiple geographic regions within the United States and European starlings within all regions tested positive for ciprofloxacin-resistant E. coli, but prevalence differed by region. Total number of birds on feedlots were positively associated with increased cattle fecal shedding of ciprofloxacin-resistant E. coli. Targeted control of invasive European starlings reduced bird numbers on feedlots by 70.4%, but decreasing populations of European starlings was not associated with corresponding reductions in bovine fecal prevalence of ciprofloxacin-resistant E. coli. These data provide evidence for the role of wild bird depredation in feedlots contributing to fecal shedding of ciprofloxacin-resistant E. coli, but a single month of European starling control in feedlots was not sufficient to impact the fecal carriage of this organism in cattle.


Birds/microbiology , Cattle Diseases/microbiology , Ciprofloxacin/pharmacology , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Feces/microbiology , Livestock/microbiology , Animals , Animals, Wild/microbiology , Anti-Bacterial Agents/pharmacology , Cattle , Cattle Diseases/drug therapy , Drug Resistance, Bacterial/drug effects , Starlings/microbiology , United States
7.
Sci Rep ; 10(1): 8093, 2020 05 15.
Article En | MEDLINE | ID: mdl-32415136

Antimicrobial use in livestock production is a driver for the development and proliferation of antimicrobial resistance (AMR). Wildlife interactions with livestock, acquiring associated AMR bacteria and genes, and wildlife's subsequent dispersal across the landscape are hypothesized to play an important role in the ecology of AMR. Here, we examined priority AMR phenotypes and genotypes of Escherichia coli isolated from the gastrointestinal tracts of European starlings (Sturnus vulgaris) found on concentrated animal feeding operations (CAFOs). European starlings may be present in high numbers on CAFOs (>100,000 birds), interact with urban environments, and can migrate distances exceeding 1,500 km in North America. In this study, 1,477 European starlings from 31 feedlots in five U.S. states were sampled for E. coli resistant to third generation cephalosporins (3G-C) and fluoroquinolones. The prevalence of 3G-C and fluoroquinolone-resistant E. coli was 4% and 10%, respectively. Multidrug resistance in the E. coli isolates collected (n = 236) was common, with the majority of isolates displaying resistance to six or more classes of antibiotics. Genetic analyses of a subset of these isolates identified 94 genes putatively contributing to AMR, including seven class A and C ß-lactamases as well as mutations in gyrA and parC recognized to confer resistance to quinolones. Phylogenetic and subtyping assessments showed that highly similar isolates (≥99.4% shared core genome, ≥99.6% shared coding sequence) with priority AMR were found in birds on feedlots separated by distances exceeding 150 km, suggesting that European starlings could be involved in the interstate dissemination of priority AMR bacteria.


Animal Feed/analysis , Anti-Bacterial Agents/pharmacology , Bird Diseases/drug therapy , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/drug effects , Gastrointestinal Tract/drug effects , Starlings/microbiology , Animals , Bird Diseases/epidemiology , Bird Diseases/microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/drug therapy , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Europe/epidemiology , Gastrointestinal Tract/microbiology , Phylogeny
8.
Int J Food Microbiol ; 316: 108480, 2020 Mar 02.
Article En | MEDLINE | ID: mdl-31862511

Tomatoes have been linked to Salmonella outbreaks in the United States (US). Plasticulture systems, that combine raised beds, plastic mulch, drip irrigation and fumigation, are common in commercial staked fresh tomato production in the US. The US FDA Produce Safety Rule prohibits the distribution of any produce covered by the rule (including fresh market tomatoes) that drops to the ground before harvest. This research was undertaken to better characterize the risks posed by tomatoes that touch plastic mulch or soil immediately before or during harvest. Research was conducted in three states (Florida, Maryland, and Ohio). Each state utilized tomatoes from their state at the point of harvest maturity most common in that state. Each state used indigenous soil and plastic mulch for transfer scenarios. New plastic mulch obtained directly from the application roll and used plastic mulch that had been present on beds for a growing season were evaluated. A five-strain cocktail of Salmonella enterica isolates obtained from tomato outbreaks was used. Mulch (new or used), soil, or tomatoes were spot inoculated with 100 µl of inoculum to obtain a final population of ~6 log CFU/surface. Items were either touched to each other immediately (1-2 s) after inoculation (wet contact) or allowed to dry at ambient temperature for 1 h or 24 h (dry contact). All surfaces remained in brief (1-5 s) or extended (24 h) contact at ambient temperature. Transfer of Salmonella between a tomato and plastic mulch or soil is dependent on contact time, dryness of the inoculum, type of soil, and contact surface. Transfer of Salmonella to and from the mulch and tomatoes for wet and 1 h dry inocula were similar with mean log % transfers varying from 0.7 ± 0.2 to 1.9 ± 0.1. The transfer of Salmonella between soil or plastic mulch to and from tomatoes was dependent on moisture with wet and 1 h dry inocula generally yielding significantly (p < 0.05) higher transfer than the 24 h dry inoculum. Results indicate that harvesting dry tomatoes significantly (p < 0.05) reduces the risk of contamination from soil or mulch contact. Transfer to tomatoes was generally significantly greater (p < 0.05) from new and used plastic mulch than from soil. If contamination and moisture levels are equivalent and contact times are equal to or <24 h before harvest, significantly (p < 0.05) more Salmonella transfers to tomatoes from mulch than from soil. Our findings support that harvesting tomatoes from soil has similar or lower risk than harvesting from plastic mulch.


Agriculture/methods , Plastics , Salmonella enterica/isolation & purification , Soil Microbiology , Solanum lycopersicum/microbiology , Colony Count, Microbial , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Plastics/adverse effects , Soil/chemistry , Water/adverse effects , Water/analysis
9.
Front Immunol ; 10: 1509, 2019.
Article En | MEDLINE | ID: mdl-31379808

The gut microbiome plays an important role in the immune system development, maintenance of normal health status, and in disease progression. In this study, we comparatively examined the fecal microbiomes of Amish (rural) and non-Amish (urban) infants and investigated how they could affect the mucosal immune maturation in germ-free piglets that were inoculated with the two types of infant fecal microbiota (IFM). Differences in microbiome diversity and structure were noted between the two types of fecal microbiotas. The fecal microbiota of the non-Amish (urban) infants had a greater relative abundance of Actinobacteria and Bacteroidetes phyla, while that of the Amish (rural) counterparts was dominated by Firmicutes. Amish infants had greater species richness compared with the non-Amish infants' microbiota. The fecal microbiotas of the Amish and the non-Amish infants were successfully transplanted into germ-free piglets, and the diversity and structure of the microbiota in the transplanted piglets remained similar at phylum level but not at the genus level. Principal coordinates analysis (PCoA) based on Weighted-UniFrac distance revealed distinct microbiota structure in the intestines of the transplanted piglets. Shotgun metagenomic analysis also revealed clear differences in functional diversity of fecal microbiome between Amish and non-Amish donors as well as microbiota transplanted piglets. Specific functional features were enriched in either of the microbiota transplanted piglet groups directly corresponding to the predominance of certain bacterial populations in their gut environment. Some of the colonized bacterial genera were correlated with the frequency of important lymphoid and myeloid immune cells in the ileal submucosa and mesenteric lymph nodes (MLN), both important for mucosal immune maturation. Overall, this study demonstrated that transplantation of diverse IFM into germ-free piglets largely recapitulates the differences in gut microbiota structure between rural (Amish) and urban (non-Amish) infants. Thus, fecal microbiota transplantation to germ-free piglets could be a useful large animal model system for elucidating the impact of gut microbiota on the mucosal immune system development. Future studies can focus on determining the additional advantages of the pig model over the rodent model.


Feces/microbiology , Gastrointestinal Microbiome/immunology , Microbiota/immunology , Mucous Membrane/immunology , Mucous Membrane/microbiology , Amish , Animals , Fecal Microbiota Transplantation/methods , Firmicutes/immunology , Humans , Infant , Metagenome/immunology , Swine
10.
Appl Environ Microbiol ; 83(24)2017 12 15.
Article En | MEDLINE | ID: mdl-28970227

Campylobacter jejuni clone SA is the major cause of sheep abortion and contributes significantly to foodborne illnesses in the United States. Clone SA is hypervirulent because of its distinct ability to produce systemic infection and its predominant role in clinical sheep abortion. Despite the importance of clone SA, little is known about its distribution and epidemiological features in cattle. Here we describe a prospective study on C. jejuni clone SA prevalence in 35 feedlots in 5 different states in the United States and a retrospective analysis of clone SA in C. jejuni isolates collected by National Animal Health Monitoring System (NAHMS) dairy studies in 2002, 2007, and 2014. In feedlot cattle feces, the overall prevalence of Campylobacter organisms was 72.2%, 82.1% of which were C. jejuni Clone SA accounted for 5.8% of the total C. jejuni isolates, but its prevalence varied by feedlot and state. Interestingly, starlings on the feedlots harbored C. jejuni in feces, including clone SA, suggesting that these birds may play a role in the transmission of Campylobacter In dairy cattle, the overall prevalence of clone SA was 7.2%, but a significant decrease in the prevalence was observed from 2002 to 2014. Whole-genome sequence analysis of the dairy clone SA isolates revealed that it was genetically stable over the years and most of the isolates carried the tetracycline resistance gene tet(O) in the chromosome. These findings indicate that clone SA is widely distributed in both beef and dairy cattle and provide new insights into the molecular epidemiology of clone SA in ruminants.IMPORTANCEC. jejuni clone SA is a major cause of small-ruminant abortion and an emerging threat to food safety because of its association with foodborne outbreaks. Cattle appear to serve as a major reservoir for this pathogenic organism, but there is a major gap in our knowledge about the epidemiology of clone SA in beef and dairy cattle. By taking advantage of surveillance studies conducted on a national scale, we found a wide but variable distribution of clone SA in feedlot cattle and dairy cows in the United States. Additionally, the work revealed important genomic features of clone SA isolates from cattle. These findings provide critically needed information for the development of preharvest interventions to control the transmission of this zoonotic pathogen. Control of C. jejuni clone SA will benefit both animal health and public health, as it is a zoonotic pathogen causing disease in both ruminants and humans.


Campylobacter Infections/veterinary , Campylobacter jejuni/isolation & purification , Cattle Diseases/epidemiology , Pest Control , Starlings , Animals , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Cattle , Cattle Diseases/microbiology , Colorado/epidemiology , Iowa/epidemiology , Kansas/epidemiology , Missouri/epidemiology , Prevalence , Prospective Studies , Retrospective Studies , Texas/epidemiology , United States/epidemiology
12.
AIMS Microbiol ; 3(4): 872-884, 2017.
Article En | MEDLINE | ID: mdl-31294194

Plasmids encoding green fluorescent protein (GFP) are frequently used to label bacteria, allowing the identification and differentiation from background flora during experimental studies. Because of its common use in survival studies of the foodborne pathogen Escherichia coli O157:H7, it is important to know the extent to which the plasmid is retained in this host system. Herein, the stability of a pGFPuv (Clontech Laboratories Inc) plasmid in six Escherichia coli O157:H7 isolates was assessed in an oligotrophic environment (phosphate buffered saline, PBS) without antibiotic selective pressure. The six test isolates were recovered from a variety of animal and human sources (cattle, sheep, starlings, water buffalo, and human feces). GFP labeling of the bacteria was accomplished via transfer electroporation. The stability of the GFP plasmid in the different E. coli O157:H7 isolates was variable: in one strain, GFP plasmid loss was rapid, as early as one day and complete plasmid loss was exhibited by four of the six strains within 19 days. In one of the two isolates retaining the GFP plasmid beyond 19 days, counts of GFP-labeled E. coli O157:H7 were significantly lower than the total cell population (P < 0.001). In contrast, in the other isolate after 19 days, total E. coli O157:H7 counts and GFP-labeled E. coli counts were equivalent. These results demonstrate strain-to-strain variability in plasmid stability. Consequently the use of GFP-labeled E.coli O157:H7 in prolonged survival studies may result in the underestimation of survival time due to plasmid loss.

13.
Prev Vet Med ; 134: 122-127, 2016 Nov 01.
Article En | MEDLINE | ID: mdl-27836033

Wild birds that forage around livestock facilities have been implicated as vectors of antimicrobial resistant organisms. Although antimicrobial resistant bacteria have been isolated from European starlings (Sturnus vulgaris), their role in the dissemination of antimicrobial resistant elements in livestock facilities needs further investigation. To determine whether on-farm starling density and other factors were associated with the presence of cefotaxime and ciprofloxacin resistant E. coli among dairy cows in Ohio, bovine fecal pats from 150 farms were tested for the presence of cefotaxime and ciprofloxacin resistant E. coli. Each farm was visited twice (during the summer and fall of 2007-2009). Multi-level logistic regression models with a random intercept to account for fecal pats collected within a specific visit to a farm were used to assess the associations. The percentage of samples with cefotaxime and ciprofloxacin resistant E. coli was 13.4% and 13.6%, respectively. The percentage of farms having at least one sample testing positive for cefotaxime and ciprofloxacin resistant E. coli was 56.7% and 48.7%, respectively. The odds of detecting cefotaxime and ciprofloxacin resistant E. coli in the samples was significantly higher in 2007 compared to 2008 and 2009, in fall compared to summer, and from farms closer than 60km to starling night roost sites compared to the farms further than 60km. The presence of starlings during the day had a negative association with the likelihood of detecting cefotaxime resistant E. coli. Presence of calves also had a negative association with the likelihood of detecting both cefotaxime and ciprofloxacin resistant E. coli. European starlings might play a role in the dissemination of antimicrobial resistant agents in livestock facilities related to their daily population movements rather than the specific density of birds on farm during the day.


Animal Distribution , Anti-Bacterial Agents/pharmacology , Cattle/microbiology , Drug Resistance, Bacterial , Escherichia coli/drug effects , Starlings/physiology , Animals , Cefotaxime/pharmacology , Ciprofloxacin/pharmacology , Farms , Feces/microbiology , Logistic Models , Ohio
14.
Can J Infect Dis Med Microbiol ; 2016: 1462405, 2016.
Article En | MEDLINE | ID: mdl-27375748

Emerging enteric pathogens could have not only more antibiotic resistance or virulence traits; they could also have increased resistance to heat. We quantified the effects of minimum recommended cooking and higher temperatures, individually on a collection of C. difficile isolates and on the survival probability of a mixture of emerging C. difficile strains. While minimum recommended cooking time/temperature combinations (63-71°C) allowed concurrently tested strains to survive, higher subboiling temperatures reproducibly favored the selection of newly emerging C. difficile PCR ribotype 078. Survival ratios for "ribotypes 078" : "other ribotypes" (n = 49 : 45 isolates) from the mid-2000s increased from 1 : 1 and 0.7 : 1 at 85°C (for 5 and 10 minutes, resp.) to 2.3 : 1 and 3 : 1 with heating at 96°C (for 5 and 10 minutes, resp.) indicating an interaction effect between the heating temperature and survival of C. difficile genotypes. In multistrain heating experiments, with PCR ribotypes 027 and 078 from 2004 and reference type strain ATCC 9689 banked in the 1970s, multinomial logistic regression (P < 0.01) revealed PCR ribotype 078 was the most resistant to increasing lethal heat treatments. Thermal processes (during cooking or disinfection) may contribute to the selection of emergent specific virulent strains of C. difficile. Despite growing understanding of the role of cooking on human evolution, little is known about the role of cooking temperatures on the selection and evolution of enteric pathogens, especially spore-forming bacteria.

15.
Appetite ; 99: 200-210, 2016 Apr 01.
Article En | MEDLINE | ID: mdl-26792772

The internet has become an increasingly important way of communicating with consumers about food risk information. However, relatively little is known about how consumers evaluate and come to trust the information they encounter online. Using the example of unpasteurized or raw milk this paper presents two studies exploring the trust factors associated with online information about the risks and benefits of raw milk consumption. In the first study, eye-tracking data was collected from 33 pasteurised milk consumers whilst they viewed six different milk related websites. A descriptive analysis of the eye-tracking data was conducted to explore viewing patterns. Reports revealed the importance of images as a way of capturing initial attention and foregrounding other features and highlighted the significance of introductory text within a homepage. In the second, qualitative study, 41 consumers, some of whom drank raw milk, viewed a selection of milk related websites before participating in either a group discussion or interview. Seventeen of the participants also took part in a follow up telephone interview 2 weeks later. The qualitative data supports the importance of good design whilst noting that balance, authorship agenda, the nature of evidence and personal relevance were also key factors affecting consumers trust judgements. The results of both studies provide support for a staged approach to online trust in which consumers engage in a more rapid, heuristic assessment of a site before moving on to a more in-depth evaluation of the information available. Findings are discussed in relation to the development of trustworthy online food safety resources.


Consumer Behavior , Food Safety , Internet , Milk , Pasteurization , Trust/psychology , Adolescent , Adult , Animals , Databases, Factual , Female , Follow-Up Studies , Food Contamination , Food Microbiology , Humans , Information Seeking Behavior , Male , Middle Aged , Milk/microbiology , Risk Factors , Surveys and Questionnaires , Young Adult
16.
Prev Vet Med ; 120(2): 162-168, 2015 Jun 15.
Article En | MEDLINE | ID: mdl-25940010

Potential dairy farm management and environmental factors that attract European starlings (Sturnus vulgaris) to dairy farms were explored. During the period from 2007 to 2009, 150 dairy farms were each visited twice (once during the summer and again in the fall) and the number of starlings was recorded. Risk factors were assessed for possible association with the number of starlings per milking cow (starling density), using a zero-inflated negative binomial model. Starling density was higher on farms visited in 2007 compared to those visited in 2008 or 2009. The interaction term between feeding method and feeding site was significantly associated with starling density on farm; generally, feeding outdoors was associated with increased starling density. The odds of a zero starling count (compared to a count greater than zero) was higher on farms that removed manure from barns weekly or less frequently than weekly compared to those that removed manure daily or after every milking. The odds of a zero starling count decreased with increasing distance of a farm from the closest night roost. Identifying on farm risk factors that expose farms to starlings will help farmers develop strategies that minimize the number of birds on their farms and thereby reduce physical damage to the farms as well as the potential for pathogen transmission from birds to cattle and humans.


Dairying/methods , Songbirds/physiology , Animals , Cattle , Environment , Ohio , Population Density , Risk Factors
17.
Appl Environ Microbiol ; 81(14): 4634-41, 2015 Jul.
Article En | MEDLINE | ID: mdl-25934621

Food-borne pathogen persistence in soil fundamentally affects the production of safe vegetables and small fruits. Interventions that reduce pathogen survival in soil would have positive impacts on food safety by minimizing preharvest contamination entering the food chain. Laboratory-controlled studies determined the effects of soil pH, moisture content, and soil organic matter (SOM) on the survivability of this pathogen through the creation of single-parameter gradients. Longitudinal field-based studies were conducted in Ohio to quantify the extent to which field soils suppressed Escherichia coli O157:H7 survival. In all experiments, heat-sensitive microorganisms were responsible for the suppression of E. coli O157 in soil regardless of the chemical composition of the soil. In laboratory-based studies, soil pH and moisture content were primary drivers of E. coli O157 survival, with increases in pH after 48 h (P = 0.02) and decreases in moisture content after 48 h (P = 0.007) significantly increasing the log reduction of E. coli O157 numbers. In field-based experiments, E. coli O157 counts from both heated and unheated samples were sensitive to both season (P = 0.004 for heated samples and P = 0.001 for unheated samples) and region (P = 0.002 for heated samples and P = 0.001 for unheated samples). SOM was observed to be a more significant driver of pathogen suppression than the other two factors after 48 h at both planting and harvest (P = 0.002 at planting and P = 0.058 at harvest). This research reinforces the need for both laboratory-controlled experiments and longitudinal field-based experiments to unravel the complex relationships controlling the survival of introduced organisms in soil.


Crops, Agricultural/growth & development , Escherichia coli O157/growth & development , Soil/chemistry , Colony Count, Microbial , Ohio , Soil Microbiology
18.
J Food Prot ; 78(1): 57-64, 2015 Jan.
Article En | MEDLINE | ID: mdl-25581178

Although recent reports indicated that produce contamination with foodborne pathogens is widespread in Nigeria, the sources and magnitude of microbial contamination of fruits and vegetables on farms and in markets have not been thoroughly identified. To ascertain possible pathways of contamination, the frequency and magnitude of coliform and Escherichia coli contamination of tomatoes produced in northwest Nigeria was assessed on farms and in markets. Eight hundred twenty-six tomato fruit samples and 36 irrigation water samples were collected and assessed for fecal indicator organisms. In addition, the awareness and use of food safety practices by tomato farmers and marketers were determined. Median concentration of coliforms on all field- and market-sourced tomato fruit samples, as well as in irrigation water sources, in Kaduna, Kano, and Katsina states exceeded 1,000 most probable number (MPN) per g. Median E. coli counts from 73 (17%) of 420 field samples and 231 (57%) of 406 market tomato fruit samples exceeded 100 MPN/g. Median E. coli concentrations on tomato fruits were higher (P < 0.01) in the rainy season (2.45 Log MPN/g), when irrigation was not practiced than in the dry (1.10 Log MPN/g) and early dry (0.92 Log MPN/g) seasons. Eighteen (50%) of 36 irrigation water samples had E. coli counts higher than 126 MPN/100 ml. Median E. coli contamination on market tomato fruit samples (2.66 Log MPN/g) were higher (P < 0.001) than those from tomatoes collected on farms (0.92 Log MPN/g). Farmers and marketers were generally unaware of the relationship between food safety practices and microbial contamination on fresh produce. Good agricultural practices pertaining to food safety on farms and in local markets were seldom used. Adoption of food safety practices on-farm, during transport, and during marketing could improve the microbial quality of tomatoes available to the public in this region of the world.


Agricultural Irrigation , Escherichia coli/growth & development , Feces/microbiology , Hand Disinfection , Solanum lycopersicum/microbiology , Water Microbiology , Agriculture , Animals , Commerce , Enterobacteriaceae/growth & development , Food Microbiology , Food Safety , Humans , Manure/microbiology , Nigeria
19.
Can Vet J ; 55(8): 786-9, 2014 Aug.
Article En | MEDLINE | ID: mdl-25082995

The cross-sectional (period) prevalence of Clostridium difficile in 875 farm animals from 29 commercial operations during the summer of 2008 in Ohio, USA was quantified. Compared to an external referent population of intensively managed race horses (12.7%), intensively managed commercially mature food animals (poultry, cattle, swine; < 0.6%) were infrequent shedders of C. difficile (P < 0.00001) during the warmest weeks of 2008.


Prévalence deClostridium difficilependant une période de trois semaines en été chez les animaux de ferme dans une région tempérée des États-Unis (Ohio). La prévalence par période de Clostridium difficile chez 875 animaux de ferme provenant de 29 exploitations commerciales durant l'été de 2008 en Ohio, aux États-Unis, est quantifiée. Comparativement à la population de référence constituée externe de chevaux de course à gestion intensive (12,7 %), les animaux destinés à l'alimentation et prêts à la commercialisation (volaille, bovins, porcs; < 0,6 %) ont rarement excrété C. difficile (P < 0,00001) durant les semaines les plus chaudes de 2008.(Traduit par Isabelle Vallières).


Clostridioides difficile/isolation & purification , Animal Husbandry , Animals , Animals, Domestic/microbiology , Cattle , Chickens , Cross-Sectional Studies , Feces/microbiology , Horses , Ohio/epidemiology , Prevalence , Seasons , Swine
20.
J Pathog ; 2014: 158601, 2014.
Article En | MEDLINE | ID: mdl-25580297

We (i) determined the prevalence of Clostridium difficile and their antimicrobial resistance to six antimicrobial classes, in a variety of fresh vegetables sold in retail in Ohio, USA, and (ii) conducted cumulative meta-analysis of reported prevalence in vegetables since the 1990s. Six antimicrobial classes were tested for their relevance as risk factors for C. difficile infections (CDIs) (clindamycin, moxifloxacin) or their clinical priority as exhaustive therapeutic options (metronidazole, vancomycin, linezolid, and tigecycline). By using an enrichment protocol we isolated C. difficile from three of 125 vegetable products (2.4%). All isolates were toxigenic, and originated from 4.6% of 65 vegetables cultivated above the ground (n = 3; outer leaves of iceberg lettuce, green pepper, and eggplant). Root vegetables yielded no C. difficile. The C. difficile isolates belonged to two PCR ribotypes, one with an unusual antimicrobial resistance for moxifloxacin and clindamycin (lettuce and pepper; 027-like, A(+)B(+)CDT(+); tcdC 18 bp deletion); the other PCR ribotype (eggplant, A(+)B(+) CDT(-); classic tcdC) was susceptible to all antimicrobials. Results of the cumulative weighted meta-analysis (6 studies) indicate that the prevalence of C. difficile in vegetables is 2.1% and homogeneous (P < 0.001) since the first report in 1996 (2.4%). The present study is the first report of the isolation of C. difficile from retail vegetables in the USA. Of public health relevance, antimicrobial resistance to moxifloxacin/clindamycin (a bacterial-associated risk factor for severe CDIs) was identified on the surface of vegetables that are consumed raw.

...