Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): A1-A14, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437418

RESUMEN

Image reconstruction in off-axis terahertz digital holography is complicated due to the harsh recording conditions and the non-convexity form of the problem. In this paper, we propose an inverse problem-based reconstruction technique that jointly reconstructs the object field and the amplitude of the reference field. Regularization in the wavelet domain promotes a sparse object solution. A single objective function combining the data-fidelity and regularization terms is optimized with a dedicated algorithm based on an alternating direction method of multipliers framework. Each iteration alternates between two consecutive optimizations using projections operating on each solution and one soft thresholding operator applying to the object solution. The method is preceded by a windowing process to alleviate artifacts due to the mismatch between camera frame truncation and periodic boundary conditions assumed to implement convolution operators. Experiments demonstrate the effectiveness of the proposed method, in particular, improvements of reconstruction quality, compared to two other methods.

2.
New Phytol ; 240(2): 597-612, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548040

RESUMEN

Here, we report the characterization of a plant RNA methyltransferase, orthologous to yeast trimethylguanosine synthase1 (Tgs1p) and whose downregulation was associated with apomixis in Paspalum grasses. Using phylogenetic analyses and yeast complementation, we determined that land plant genomes all encode a conserved, specific TGS1 protein. Next, we studied the role of TGS1 in female reproduction using reporter lines and loss-of-function mutants in Arabidopsis thaliana. pAtTGS1:AtTGS1 reporters showed a dynamic expression pattern. They were highly active in the placenta and ovule primordia at emergence but, subsequently, showed weak signals in the nucellus. Although expressed throughout gametophyte development, activity became restricted to the female gamete and was also detected after fertilization during embryogenesis. TGS1 depletion altered the specification of the precursor cells that give rise to the female gametophytic generation and to the sporophyte, resulting in the formation of a functional aposporous-like lineage. Our results indicate that TGS1 participates in the mechanisms restricting cell fate acquisition to a single cell at critical transitions throughout the female reproductive lineage and, thus, expand our current knowledge of the mechanisms governing female reproductive fate in plants.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Saccharomyces cerevisiae , Filogenia , Mutación/genética , Óvulo Vegetal/metabolismo , Células Germinativas , Regulación de la Expresión Génica de las Plantas
3.
Nat Commun ; 13(1): 7963, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575169

RESUMEN

Introducing asexual reproduction through seeds - apomixis - into crop species could revolutionize agriculture by allowing F1 hybrids with enhanced yield and stability to be clonally propagated. Engineering synthetic apomixis has proven feasible in inbred rice through the inactivation of three genes (MiMe), which results in the conversion of meiosis into mitosis in a line ectopically expressing the BABYBOOM1 (BBM1) parthenogenetic trigger in egg cells. However, only 10-30% of the seeds are clonal. Here, we show that synthetic apomixis can be achieved in an F1 hybrid of rice by inducing MiMe mutations and egg cell expression of BBM1 in a single step. We generate hybrid plants that produce more than 95% of clonal seeds across multiple generations. Clonal apomictic plants maintain the phenotype of the F1 hybrid along successive generations. Our results demonstrate that there is no barrier to almost fully penetrant synthetic apomixis in an important crop species, rendering it compatible with use in agriculture.


Asunto(s)
Apomixis , Oryza , Oryza/genética , Apomixis/genética , Plantas/genética , Semillas/genética , Mutación
4.
PLoS One ; 17(8): e0273695, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040902

RESUMEN

Although paramutation has been well-studied at a few hallmark loci involved in anthocyanin biosynthesis in maize, the cellular and molecular mechanisms underlying the phenomenon remain largely unknown. Previously described actors of paramutation encode components of the RNA-directed DNA-methylation (RdDM) pathway that participate in the biogenesis of 24-nucleotide small interfering RNAs (24-nt siRNAs) and long non-coding RNAs. In this study, we uncover an ARGONAUTE (AGO) protein as an effector of the RdDM pathway that is in charge of guiding 24-nt siRNAs to their DNA target to create de novo DNA methylation. We combined immunoprecipitation, small RNA sequencing and reverse genetics to, first, validate AGO104 as a member of the RdDM effector complex and, then, investigate its role in paramutation. We found that AGO104 binds 24-nt siRNAs involved in RdDM, including those required for paramutation at the b1 locus. We also show that the ago104-5 mutation causes a partial reversion of the paramutation phenotype at the b1 locus, revealed by intermediate pigmentation levels in stem tissues. Therefore, our results place AGO104 as a new member of the RdDM effector complex that plays a role in paramutation at the b1 locus in maize.


Asunto(s)
Proteínas de Arabidopsis , Metilación de ADN , Proteínas de Arabidopsis/genética , ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , ARN de Planta/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Zea mays/genética , Zea mays/metabolismo
5.
Plants (Basel) ; 11(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893633

RESUMEN

Sexuality and apomixis are interconnected plant reproductive routes possibly behaving as polyphenic traits under the influence of the environment. In the subtropical grass Paspalum notatum, one of the controllers of apospory, a main component of gametophytic apomixis reproduction, is TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1), a multifunctional gene previously associated with RNA cleavage regulation (including mRNA splicing as well as rRNA and miRNA processing), transcriptional modulation and the establishment of heterochromatin. In particular, the downregulation of TGS1 induces a sexuality decline and the emergence of aposporous-like embryo sacs. The present work was aimed at identifying TGS1 target RNAs expressed during reproductive development of Paspalum notatum. First, we mined available RNA databases originated from spikelets of sexual and apomictic plants, which naturally display a contrasting TGS1 representation, to identify differentially expressed mRNA splice variants and miRNAs. Then, the role of TGS1 in the generation of these particular molecules was investigated in antisense tgs1 sexual lines. We found that CHLOROPHYLL A-B BINDING PROTEIN 1B-21 (LHC Ib-21, a component of the chloroplast light harvesting complex), QUI-GON JINN (QGJ, encoding a MAP3K previously associated with apomixis) and miR2275 (a meiotic 24-nt phasi-RNAs producer) are directly or indirectly targeted by TGS1. Our results point to a coordinated control exercised by signal transduction and siRNA machineries to induce the transition from sexuality to apomixis.

6.
Plants (Basel) ; 11(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684245

RESUMEN

The capacity for apomixis in Paspalum notatum is controlled by a single-dominant genomic region, which shows strong synteny to a portion of rice chromosome 12 long arm. The locus LOC_Os12g40890, encoding the Auxin/Indole-3-Acetic Acid (Aux/IAA) family member OsIAA30, is located in this rice genomic segment. The objectives of this work were to identify transcripts coding for Aux/IAA proteins expressed in reproductive tissues of P. notatum, detect the OsIAA30 putative ortholog and analyze its temporal and spatial expression pattern in reproductive organs of sexual and apomictic plants. Thirty-three transcripts coding for AUX/IAA proteins were identified. Predicted protein alignment and phylogenetic analysis detected a highly similar sequence to OsIAA30 (named as PnIAA30) present in both sexual and apomictic samples. The expression assays of PnIAA30 showed a significant down-regulation in apomictic spikelets compared to sexual ones at the stages of anthesis and post-anthesis, representation levels negatively correlated with apospory expressivity and different localizations in sexual and apomictic ovules. Several PnIAA30 predicted interactors also appeared differentially regulated in the sexual and apomictic floral transcriptomes. Our results showed that an auxin-response repressor similar to OsIAA30 is down-regulated in apomictic spikelets of P. notatum and suggests a contrasting regulation of auxin signaling during sexual and asexual seed formation.

7.
Plants (Basel) ; 10(3)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33802754

RESUMEN

These proceedings contain the abstracts for the presentations given at the 7th biennial Seminars on Advances in Apomixis Research, held virtually on 2-3 and 9 December 2020. The first day hosted the kick-off meeting of the EU-funded Mechanisms of Apomictic Development (MAD) project, while the remaining days were dedicated to oral presentations and in-depth exchanges on the latest progress in the field of apomixis and plant reproductive biology research.

8.
Genes (Basel) ; 11(9)2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839398

RESUMEN

In the past decades, the grasses of the Paspalum genus have emerged as a versatile model allowing evolutionary, genetic, molecular, and developmental studies on apomixis as well as successful breeding applications. The rise of such an archetypal system progressed through integrative phases, which were essential to draw conclusions based on solid standards. Here, we review the steps adopted in Paspalum to establish the current body of knowledge on apomixis and provide model breeding programs for other agronomically important apomictic crops. In particular, we discuss the need for previous detailed cytoembryological and cytogenetic germplasm characterization; the establishment of sexual and apomictic materials of identical ploidy level; the development of segregating populations useful for inheritance analysis, positional mapping, and epigenetic control studies; the development of omics data resources; the identification of key molecular pathways via comparative gene expression studies; the accurate molecular characterization of genomic loci governing apomixis; the in-depth functional analysis of selected candidate genes in apomictic and model species; the successful building of a sexual/apomictic combined breeding scheme.


Asunto(s)
Apomixis , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Paspalum/crecimiento & desarrollo , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Modelos Biológicos , Paspalum/genética , Semillas/genética
9.
J Back Musculoskelet Rehabil ; 33(4): 685-692, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31658035

RESUMEN

BACKGROUND: Recent technologies, such as the iPod, are often equipped with an accelerometer and magnetometer, which, through software applications, can perform various inclinometric functions. These applications have the potential to measure and quantify range of motion (ROM). OBJECTIVE: The purpose of this study was to estimate the iPod "Gyroscope" application intra- and inter-rater reliability as well as its criterion validity in healthy participants lumbar ROM assessment. METHODS: The sample consisted of 29 healthy participants. For the estimation of intra- and inter-reliability, two examiners measured the lumbar ROM of each participant twice using the iPod. To estimate the criterion validity, the measures were compared to those obtained with the Back Range of Motion Device (BROM; lateral flexion) and the double inclinometer (flexion and extension). Reliability and validity were then established using the intraclass correlation coefficient (ICC). RESULTS: We observed a moderate to high intra-rater reliability (ICCs = 0.67-0.91) and a moderate to high inter-rater reliability for each movement (ICCs = 0.72-0.89). For the criterion validity, the ICCs were all high (ICCs = 0.65-0.89). CONCLUSION: Our results provide evidence that the iPod "Gyroscope" application can be used to assess lumbar ROM for all movements.


Asunto(s)
Movimiento/fisiología , Rango del Movimiento Articular/fisiología , Adulto , Femenino , Voluntarios Sanos , Humanos , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/fisiopatología , Reproductor MP3 , Masculino , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Programas Informáticos , Adulto Joven
10.
Front Plant Sci ; 10: 1566, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31850040

RESUMEN

Aposporous apomictic plants form clonal maternal seeds by inducing the emergence of non-reduced (2n) embryo sacs in the ovule nucellus and the development of embryos by parthenogenesis. In previous work, we reported a plant-specific TRIMETHYLGUANOSINE SYNTHASE 1 (TGS1) gene (PN_TGS1-like) showing expression levels positively correlated with sexuality rates in facultative apomictic Paspalum notatum. PN_ TGS1-like displayed contrasting in situ hybridization patterns in apomictic and sexual plant ovules from premeiosis to anthesis. Here we transformed sexual P. notatum with a TGS1-like antisense construction under a constitutive promoter, in order to produce lines with reduced transcript representation. Antisense plants developed prominent trichomes on the adaxial leaf surface, a trait absent from control genotypes. Reproductive development analysis revealed occasional formation of twin ovules. While control individuals typically displayed a single meiotic embryo sac per ovule, antisense lines showed 12.93-15.79% of ovules bearing extra nuclei, which can be assigned to aposporous-like embryo sacs (AES-like) or, alternatively, to gametophytes with a misguided cell fate development. Moreover, around 8.42-9.52% of ovules showed what looked like a combination of meiotic and aposporous-like sacs. Besides, 32.5% of ovules at early developmental stages displayed nucellar cells with prominent nuclei resembling apospory initials (AIs), which surrounded the megaspore mother cell (MMC) or the MMC-derived meiotic products. Two or more concurrent meiosis events were never detected, which suggest a non-reduced nature for the extra nuclei observed in the mature ovules, unless they were generated by proliferation and misguided differentiation of the legitimate meiotic products. The antisense lines produced a similar amount of viable even-sized pollen with respect to control genotypes, and formed an equivalent full seed set (∼9% of total seeds) after self-pollination. Flow cytometry analyses of caryopses derived from antisense lines revealed that all full seeds had originated from meiotic embryo sacs (i.e. by sexuality). A reduction of 25.55% in the germination percentage was detected when comparing antisense lines with controls. Our results indicate that PN_ TGS1-like influences ovule, gametophyte and possibly embryo development.

11.
BMC Genomics ; 20(1): 487, 2019 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-31195966

RESUMEN

BACKGROUND: Apomixis is considered an evolutionary deviation of the sexual reproductive pathway leading to the generation of clonal maternal progenies by seeds. Recent evidence from model and non-model species suggested that this trait could be modulated by epigenetic mechanisms involving small RNAs (sRNAs). Here we profiled floral sRNAs originated from apomictic and sexual Paspalum notatum genotypes in order to identify molecular pathways under epigenetic control that might be involved in the transition from sexuality to agamospermy. RESULTS: The mining of genes participating in sRNA-directed pathways from floral Paspalum transcriptomic resources showed these routes are functional during reproductive development, with several members differentially expressed in apomictic and sexual plants. Triplicate floral sRNA libraries derived from apomictic and a sexual genotypes were characterized by using high-throughput sequencing technology. EdgeR was apply to compare the number of sRNA reads between sexual and apomictic libraries that map over all Paspalum floral transcripts. A total of 1525 transcripts showed differential sRNA representation, including genes related to meiosis, plant hormone signaling, biomolecules transport, transcription control and cell cycle. Survey for miRNA precursors on transcriptome and genome references allowed the discovery of 124 entities, including 40 conserved and 8 novel ones. Fifty-six clusters were differentially represented in apomictic and sexual plants. All differentially expressed miRNAs were up-regulated in apomictic libraries but miR2275, which showed different family members with opposed representation. Examination of predicted miRNAs targets detected 374 potential candidates. Considering sRNA, miRNAs and target surveys together, 14 genes previously described as related with auxin metabolism, transport and signaling were detected, including AMINO ACID/AUXIN PERMEASE 15, IAA-AMIDO SYNTHETASE GH3-8, IAA30, miR160, miR167, miR164, miR319, ARF2, ARF8, ARF10, ARF12, AFB2, PROLIFERATING CELL FACTOR 6 and NITRATE TRANSPORTER 1.1. CONCLUSIONS: This work provides a comprehensive survey of the sRNA differential representation in flowers of sexual and apomictic Paspalum notatum plants. An integration of the small RNA profiling data presented here and previous transcriptomic information suggests that sRNA-mediated regulation of auxin pathways is pivotal in promoting apomixis. These results will underlie future functional characterization of the molecular components mediating the switch from sexuality to apomixis.


Asunto(s)
Apomixis/genética , Paspalum/genética , Paspalum/fisiología , ARN Pequeño no Traducido/genética , RNA-Seq , Flores/genética , MicroARNs/genética , Transcriptoma/genética
12.
Front Plant Sci ; 9: 1547, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405677

RESUMEN

Apomixis is a clonal mode of reproduction via seeds, which results from the failure of meiosis and fertilization in the sexual female reproductive pathway. In previous transcriptomic surveys, we identified a mitogen-activated protein kinase kinase kinase (N46) displaying differential representation in florets of sexual and apomictic Paspalum notatum genotypes. Here, we retrieved and characterized the N46 full cDNA sequence from sexual and apomictic floral transcriptomes. Phylogenetic analyses showed that N46 was a member of the YODA family, which was re-named QUI-GON JINN (QGJ). Differential expression in florets of sexual and apomictic plants was confirmed by qPCR. In situ hybridization experiments revealed expression in the nucellus of aposporous plants' ovules, which was absent in sexual plants. RNAi inhibition of QGJ expression in two apomictic genotypes resulted in significantly reduced rates of aposporous embryo sac formation, with respect to the level detected in wild type aposporous plants and transformation controls. The QGJ locus segregated independently of apospory. However, a probe derived from a related long non-coding RNA sequence (PN_LNC_QGJ) revealed RFLP bands cosegregating with the Paspalum apospory-controlling region (ACR). PN_LNC_QGJ is expressed in florets of apomictic plants only. Our results indicate that the activity of QGJ in the nucellus of apomictic plants is necessary to form non-reduced embryo sacs and that a long non-coding sequence with regulatory potential is similar to sequences located within the ACR.

13.
New Phytol ; 219(1): 58-65, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29701876

RESUMEN

The mitochondrial calcium uniporter complex (MCUc) was recently characterized in details in metazoans and consists of pore-forming units (MCUs) and regulatory factors that channel calcium (Ca2+ ) ion into the mitochondria. MCUs participate in many stress and developmentally related processes involving Ca2+ . Although multiple homologues of MCUs and one regulatory subunit are usually present in plants, the first functional characterization and contribution to Ca2+ related processes of these proteins have been reported recently. Here, we focused on two predicted Arabidopsis MCUs and studied their role in the germination and the growth of pollen tube, a tip-growing cell type highly dependent on Ca2+ homeostasis. Heterologous expression of MCU1 or MCU2 in yeast is sufficient to generate a mitochondrial Ca2+ influx. MCU1 and MCU2 fluorescent reporters are co-expressed in the vegetative cell mitochondria of the pollen grain but are undetectable in the embryo sac. We demonstrate that MCU1 and MCU2 can form a heterotypic complex. Phenotypic analyses revealed an impaired pollen tube germination and growth in vitro only for the mcu2 mutants suggesting a predominant role of MCU2. Our results show that mitochondrial Ca2+ controlled by MCUs is an additional player in Arabidopsis pollen tube germination and growth.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Canales de Calcio/genética , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/fisiología , Polinización
14.
BMC Genomics ; 18(1): 318, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28431521

RESUMEN

BACKGROUND: Paspalum notatum Flügge is a subtropical grass native to South America, which includes sexual diploid and apomictic polyploid biotypes. In the past decade, a number of apomixis-associated genes were discovered in this species through genetic mapping and differential expression surveys. However, the scarce information on Paspalum sequences available in public databanks limited annotations and functional predictions for these candidates. RESULTS: We used a long-read 454/Roche FLX+ sequencing strategy to produce robust reference transcriptome datasets from florets of sexual and apomictic Paspalum notatum genotypes and delivered a list of transcripts showing differential representation in both reproductive types. Raw data originated from floral samples collected from premeiosis to anthesis was assembled in three libraries: i) sexual (SEX), ii) apomictic (APO) and iii) global (SEX + APO). A group of physically-supported Paspalum mRNA and EST sequences matched with high level of confidence to both sexual and apomictic libraries. A preliminary trial allowed discovery of the whole set of putative alleles/paralogs corresponding to 23 previously identified apomixis-associated candidate genes. Moreover, a list of 3,732 transcripts and several co-expression and protein -protein interaction networks associated with apomixis were identified. CONCLUSIONS: The use of the 454/Roche FLX+ transcriptome database will allow the detailed characterization of floral alleles/paralogs of apomixis candidate genes identified in prior and future work. Moreover, it was used to reveal additional candidate genes differentially represented in apomictic and sexual flowers. Gene ontology (GO) analyses of this set of transcripts indicated that the main molecular pathways altered in the apomictic genotype correspond to specific biological processes, like biotic and abiotic stress responses, growth, development, cell death and senescence. This data collection will be of interest to the plant reproduction research community and, particularly, to Paspalum breeding projects.


Asunto(s)
Paspalum/genética , Transcriptoma , Etiquetas de Secuencia Expresada , Flores/genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Paspalum/crecimiento & desarrollo , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/química , ARN de Planta/aislamiento & purificación , ARN de Planta/metabolismo , Análisis de Secuencia de ARN
15.
Food Chem ; 181: 270-6, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-25794750

RESUMEN

In the perspective of studying lipid biosynthesis in the argan seed, the anatomy, ploidy level and lipid composition of mature seed tissues were investigated using an experimental design including two locations in Algeria and four years of study. Using flow cytometry, we determined that mature argan seeds consist of two well-developed tissues, the embryo and the endosperm. The lipid content of the embryo was higher than that of the endosperm, but the dry weight of the endosperm was higher. Consequently, both tissues contribute equally to seed oil yield. Considerable differences in fatty acid composition were observed between the two tissues. In particular, the endosperm 18:2 percentage was twofold higher than that of the embryo. The tocopherol content of the endosperm was also markedly higher than that of the embryo. In contrast, the endosperm and the embryo had similar sterol and triterpene alcohol contents and compositions.


Asunto(s)
Endospermo/química , Lípidos/análisis , Aceites de Plantas/análisis , Sapotaceae/química , Ácidos Grasos/análisis , Sapotaceae/embriología , Semillas/química , Tocoferoles/análisis , Vitamina E/análisis
16.
BMC Plant Biol ; 14: 297, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25404464

RESUMEN

BACKGROUND: In flowering plants, apomixis (asexual reproduction via seeds) is widely believed to result from failure of key regulators of the sexual female reproductive pathway. In the past few years, both differential display and RNA-seq comparative approaches involving reproductive organs of sexual plants and their apomictic counterparts have yielded extensive lists of candidate genes. Nevertheless, only a limited number of these genes have been functionally characterized, with few clues consequently available for understanding the molecular control of apomixis. We have previously identified several cDNA fragments with high similarity to genes involved in RNA biology and with differential amplification between sexual and apomictic Paspalum notatum plants. Here, we report the characterization of one of these candidates, namely, N69 encoding a protein of the S-adenosyl-L-methionine-dependent methyltransferases superfamily. The purpose of this work was to extend the N69 cDNA sequence and to characterize its expression at different developmental stages in both sexual and apomictic individuals. RESULTS: Molecular characterization of the N69 cDNA revealed homology with genes encoding proteins similar to yeast and mammalian trimethylguanosine synthase/PRIP-interacting proteins. These proteins play a dual role as ERK2-controlled transcriptional coactivators and mediators of sn(o)RNA and telomerase RNA cap trimethylation, and participate in mammals and yeast development. The N69-extended sequence was consequently renamed PnTgs1-like. Expression of PnTgs1-like during reproductive development was significantly higher in floral organs of sexual genotypes compared with apomicts. This difference was not detected in vegetative tissues. In addition, expression levels in reproductive tissues of several genotypes were negatively correlated with facultative apomixis rates. Moreover, in situ hybridization observations revealed that PnTgs1-like expression is relatively higher in ovules of sexual plants throughout development, from premeiosis to maturity. Tissues where differential expression is detected include nucellar cells, the site of aposporous initials differentiation in apomictic genotypes. CONCLUSIONS: Our results indicate that PnTgs1-like (formerly N69) encodes a trimethylguanosine synthase-like protein whose function in mammals and yeast is critical for development, including reproduction. Our findings also suggest a pivotal role for this candidate gene in nucellar cell fate, as its diminished expression is correlated with initiation of the apomictic pathway in plants.


Asunto(s)
Apomixis/genética , Regulación de la Expresión Génica de las Plantas , Paspalum/enzimología , Proteínas de Plantas/genética , Secuencia de Bases , ADN Complementario/genética , Genotipo , Hibridación in Situ , Metionina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Datos de Secuencia Molecular , Óvulo Vegetal , Paspalum/genética , Paspalum/crecimiento & desarrollo , Paspalum/fisiología , Proteínas de Plantas/metabolismo , Semillas/genética , Análisis de Secuencia de ADN
17.
Cell ; 145(5): 707-19, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620136

RESUMEN

Defining the contributions and interactions of paternal and maternal genomes during embryo development is critical to understand the fundamental processes involved in hybrid vigor, hybrid sterility, and reproductive isolation. To determine the parental contributions and their regulation during Arabidopsis embryogenesis, we combined deep-sequencing-based RNA profiling and genetic analyses. At the 2-4 cell stage there is a strong, genome-wide dominance of maternal transcripts, although transcripts are contributed by both parental genomes. At the globular stage the relative paternal contribution is higher, largely due to a gradual activation of the paternal genome. We identified two antagonistic maternal pathways that control these parental contributions. Paternal alleles are initially downregulated by the chromatin siRNA pathway, linked to DNA and histone methylation, whereas transcriptional activation requires maternal activity of the histone chaperone complex CAF1. Our results define maternal epigenetic pathways controlling the parental contributions in plant embryos, which are distinct from those regulating genomic imprinting.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , N-Metiltransferasa de Histona-Lisina/metabolismo , Óvulo Vegetal/metabolismo , Factores de Empalme de ARN , ARN Interferente Pequeño/metabolismo , Semillas/genética , Activación Transcripcional
18.
Plant Cell ; 23(2): 443-58, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21325139

RESUMEN

Apomixis is a form of asexual reproduction through seeds in angiosperms. Apomictic plants bypass meiosis and fertilization, developing offspring that are genetically identical to their mother. In a genetic screen for maize (Zea mays) mutants mimicking aspects of apomixis, we identified a dominant mutation resulting in the formation of functional unreduced gametes. The mutant shows defects in chromatin condensation during meiosis and subsequent failure to segregate chromosomes. The mutated locus codes for AGO104, a member of the ARGONAUTE family of proteins. AGO104 accumulates specifically in somatic cells surrounding the female meiocyte, suggesting a mobile signal rather than cell-autonomous control. AGO104 is necessary for non-CG methylation of centromeric and knob-repeat DNA. Digital gene expression tag profiling experiments using high-throughput sequencing show that AGO104 influences the transcription of many targets in the ovaries, with a strong effect on centromeric repeats. AGO104 is related to Arabidopsis thaliana AGO9, but while AGO9 acts to repress germ cell fate in somatic tissues, AGO104 acts to repress somatic fate in germ cells. Our findings show that female germ cell development in maize is dependent upon conserved small RNA pathways acting non-cell-autonomously in the ovule. Interfering with this repression leads to apomixis-like phenotypes in maize.


Asunto(s)
Meiosis , Óvulo Vegetal/fisiología , Proteínas de Plantas/metabolismo , Reproducción Asexuada , Zea mays/genética , Centrómero/metabolismo , Metilación de ADN , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Heterocromatina/metabolismo , Mutación , Filogenia , Proteínas de Plantas/genética , ARN de Planta/genética , Zea mays/fisiología
19.
Plant Cell ; 22(10): 3249-67, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21037104

RESUMEN

Apomictic plants reproduce asexually through seeds by avoiding both meiosis and fertilization. Although apomixis is genetically regulated, its core genetic component(s) has not been determined yet. Using profiling experiments comparing sexual development in maize (Zea mays) to apomixis in maize-Tripsacum hybrids, we identified six loci that are specifically downregulated in ovules of apomictic plants. Four of them share strong homology with members of the RNA-directed DNA methylation pathway, which in Arabidopsis thaliana is involved in silencing via DNA methylation. Analyzing loss-of-function alleles for two maize DNA methyltransferase genes belonging to that subset, dmt102 and dmt103, which are downregulated in the ovules of apomictic plants and are homologous to the Arabidopsis CHROMOMETHYLASEs and DOMAINS REARRANGED METHYLTRANSFERASE families, revealed phenotypes reminiscent of apomictic development, including the production of unreduced gametes and formation of multiple embryo sacs in the ovule. Loss of DMT102 activity in ovules resulted in the establishment of a transcriptionally competent chromatin state in the archesporial tissue and in the egg cell that mimics the chromatin state found in apomicts. Interestingly, dmt102 and dmt103 expression in the ovule is found in a restricted domain in and around the germ cells, indicating that a DNA methylation pathway active during reproduction is essential for gametophyte development in maize and likely plays a critical role in the differentiation between apomictic and sexual reproduction.


Asunto(s)
Metilación de ADN , Gametogénesis en la Planta , Óvulo Vegetal/crecimiento & desarrollo , Zea mays/genética , Cromatina/metabolismo , ADN de Plantas/metabolismo , ADN-Citosina Metilasas/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genotipo , Histonas/metabolismo , Metiltransferasas/metabolismo , Mutación , Óvulo Vegetal/genética , Fenotipo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/embriología , Plantas Modificadas Genéticamente/genética , Reproducción Asexuada , Zea mays/embriología
20.
Plant Signal Behav ; 5(10): 1167-70, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20505370

RESUMEN

During embryogenesis there is a major switch from dependence upon maternally-deposited products to reliance on products of the zygotic genome. In animals, this so-called maternal-to-zygotic transition occurs following a period of transcriptional quiescence. Recently, we have shown that the early embryo in Arabidopsis is also quiescent, a state inherited from the female gamete and linked to specific patterns of H3K9 dimethylation and TERMINAL FLOWER2 (TFL2) localization. We also demonstrated that CHROMOMETHYLASE 3 (CMT3) is required for H3K9 dimethylation in the egg cell and for normal embryogenesis during the first few divisions of the zygote. Subsequent analysis of CMT3 mutants points to a key role in egg cell reprogramming by controlling silencing in both transposon and euchromatic regions. A speculative model of the CMT3-induced egg cell silencing is presented here, based on these results and current data from the literature suggesting the potential involvement of small RNAs targeted to the egg cell, a process conceptually similar to the division of labor described in the male gametophyte for which we show that H3K9 modifications and TFL2 localization are reminiscent of the female gametophyte.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Reprogramación Celular , Elementos Transponibles de ADN/genética , ADN-Citosina Metilasas/metabolismo , Eucromatina/genética , Silenciador del Gen , Óvulo/metabolismo , Acetilación , Arabidopsis/citología , Arabidopsis/embriología , Proteínas Cromosómicas no Histona/metabolismo , Metilación de ADN , Histonas/metabolismo , Modelos Biológicos , Óvulo Vegetal/citología , Óvulo/citología , Óvulo/enzimología , Transporte de Proteínas , ARN de Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...