Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Nat Commun ; 14(1): 1264, 2023 03 07.
Article En | MEDLINE | ID: mdl-36882405

Human immunodeficiency virus (HIV) is a mucosally transmitted virus that causes immunodeficiency and AIDS. Developing efficacious vaccines to prevent infection is essential to control the epidemic. Protecting the vaginal and rectal mucosa, the primary routes of HIV entry has been a challenge given the significant compartmentalization between the mucosal and peripheral immune systems. We hypothesized that direct intranodal vaccination of mucosa associated lymphoid tissue (MALT) such as the readily accessible palatine tonsils could overcome this compartmentalization. Here we show that rhesus macaques primed with plasmid DNA encoding SIVmac251-env and gag genes followed by an intranodal tonsil MALT boost with MVA encoding the same genes protects from a repeated low dose intrarectal challenge with highly pathogenic SIVmac251; 43% (3/7) of vaccinated macaques remained uninfected after 9 challenges as compared to the unvaccinated control (0/6) animals. One vaccinated animal remained free of infection even after 22 challenges. Vaccination was associated with a ~2 log decrease in acute viremia that inversely correlated with anamnestic immune responses. Our results suggest that a combination of systemic and intranodal tonsil MALT vaccination could induce robust adaptive and innate immune responses leading to protection from mucosal infection with highly pathogenic HIV and rapidly control viral breakthroughs.


HIV Infections , Lymphoma, B-Cell, Marginal Zone , Vaccinia , Animals , Humans , Female , Palatine Tonsil , Macaca mulatta , Vaccinia virus , Vaccination
2.
J Virol ; 89(8): 4158-69, 2015 Apr.
Article En | MEDLINE | ID: mdl-25631080

UNLABELLED: Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. IMPORTANCE: Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of the gp120 trimer, the inaccessibility of the conserved sequences, highly variable protein sequences, and the loss of HIV-1-specific antibody-producing cells during development. We have shown previously that tumor necrosis factor (TNF) superfamily ligands, including BAFF and APRIL, can be multitrimerized using the lung protein SP-D (surfactant protein D), enhancing immune responses. Here we show that DNA or DNA-protein vaccines encoding BAFF or APRIL multitrimers, IL-12p70, and membrane-bound HIV-1 Env gp140 induced tier 1 and tier 2 neutralizing antibodies in a mouse model. BAFF and APRIL enhanced the immune reaction, improved antibody binding, and increased the numbers of anti-HIV-1 antibody-secreting cells. Adaptation of this vaccine design may prove useful in designing preventive HIV-1 vaccines for humans.


AIDS Vaccines/immunology , Adjuvants, Immunologic/pharmacology , Antibodies, Neutralizing/drug effects , HIV Envelope Protein gp120/immunology , HIV Infections/prevention & control , HIV-1/immunology , Vaccines, DNA/immunology , Analysis of Variance , Animals , B-Cell Activating Factor/immunology , Enzyme-Linked Immunosorbent Assay , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , HIV Envelope Protein gp120/drug effects , Interleukin-12/immunology , Mice , Mice, Inbred BALB C , Neutralization Tests , Plasmids/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/immunology
...