Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Cancer Cell ; 41(2): 323-339.e10, 2023 02 13.
Article En | MEDLINE | ID: mdl-36736318

Angioimmunoblastic T cell lymphoma (AITL) is a peripheral T cell lymphoma that originates from T follicular helper (Tfh) cells and exhibits a prominent tumor microenvironment (TME). IDH2 and TET2 mutations co-occur frequently in AITL, but their contribution to tumorigenesis is poorly understood. We developed an AITL mouse model that is driven by Idh2 and Tet2 mutations. Malignant Tfh cells display aberrant transcriptomic and epigenetic programs that impair TCR signaling. Neoplastic Tfh cells bearing combined Idh2 and Tet2 mutations show altered cross-talk with germinal center B cells that promotes B cell clonal expansion while decreasing Fas-FasL interaction and reducing B cell apoptosis. The plasma cell count and angiogenesis are also increased in the Idh2-mutated tumors, implying a major relationship between Idh2 mutation and the characteristic AITL TME. Our mouse model recapitulates several features of human IDH2-mutated AITL and provides a rationale for exploring therapeutic targeting of Tfh-TME cross-talk for AITL patients.


Dioxygenases , Immunoblastic Lymphadenopathy , Lymphoma, T-Cell , Animals , Humans , Mice , Dioxygenases/genetics , DNA-Binding Proteins/genetics , Immunoblastic Lymphadenopathy/genetics , Isocitrate Dehydrogenase/genetics , Lymphoma, T-Cell/genetics , Mutation , T Follicular Helper Cells/pathology , T-Lymphocytes, Helper-Inducer , Tumor Microenvironment/genetics
2.
Proc Natl Acad Sci U S A ; 120(4): e2208176120, 2023 01 24.
Article En | MEDLINE | ID: mdl-36652477

Mutations in IDH1, IDH2, and TET2 are recurrently observed in myeloid neoplasms. IDH1 and IDH2 encode isocitrate dehydrogenase isoforms, which normally catalyze the conversion of isocitrate to α-ketoglutarate (α-KG). Oncogenic IDH1/2 mutations confer neomorphic activity, leading to the production of D-2-hydroxyglutarate (D-2-HG), a potent inhibitor of α-KG-dependent enzymes which include the TET methylcytosine dioxygenases. Given their mutual exclusivity in myeloid neoplasms, IDH1, IDH2, and TET2 mutations may converge on a common oncogenic mechanism. Contrary to this expectation, we observed that they have distinct, and even opposite, effects on hematopoietic stem and progenitor cells in genetically engineered mice. Epigenetic and single-cell transcriptomic analyses revealed that Idh2R172K and Tet2 loss-of-function have divergent consequences on the expression and activity of key hematopoietic and leukemogenic regulators. Notably, chromatin accessibility and transcriptional deregulation in Idh2R172K cells were partially disconnected from DNA methylation alterations. These results highlight unanticipated divergent effects of IDH1/2 and TET2 mutations, providing support for the optimization of genotype-specific therapies.


DNA-Binding Proteins , Dioxygenases , Isocitrate Dehydrogenase , Stem Cells , Animals , Mice , Dioxygenases/genetics , DNA-Binding Proteins/genetics , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Ketoglutaric Acids/metabolism , Mutation , Neoplasms , Stem Cells/metabolism
3.
Sci Signal ; 15(745): eabg8191, 2022 08 02.
Article En | MEDLINE | ID: mdl-35917363

In pancreatic ductal adenocarcinoma (PDAC), signaling from stromal cells is implicated in metastatic progression. Tumor-stroma cross-talk is often mediated through extracellular vesicles (EVs). We previously reported that EVs derived from cancer-associated stromal fibroblasts (CAFs) that are abundant in annexin A6 (ANXA6+ EVs) support tumor cell aggressiveness in PDAC. Here, we found that the cell surface glycoprotein and tetraspanin CD9 is a key component of CAF-derived ANXA6+ EVs for mediating this cross-talk. CD9 was abundant on the surface of ANXA6+ CAFs isolated from patient PDAC samples and from various mouse models of PDAC. CD9 colocalized with CAF markers in the tumor stroma, and CD9 abundance correlated with tumor stage. Blocking CD9 impaired the uptake of ANXA6+ EVs into cultured PDAC cells. Signaling pathway arrays and further analyses revealed that the uptake of CD9+ANXA6+ EVs induced mitogen-activated protein kinase (MAPK) pathway activity, cell migration, and epithelial-to-mesenchymal transition (EMT). Blocking either CD9 or p38 MAPK signaling impaired CD9+ANXA6+ EV-induced cell migration and EMT in PDAC cells. Analysis of bioinformatic datasets indicated that CD9 abundance was an independent marker of poor prognosis in patients with PDAC. Our findings suggest that CD9-mediated stromal cell signaling promotes PDAC progression.


Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Extracellular Vesicles , Pancreatic Neoplasms , Animals , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Extracellular Vesicles/metabolism , Mice , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
4.
EMBO J ; 41(9): e110466, 2022 05 02.
Article En | MEDLINE | ID: mdl-35307861

Pancreatic ductal adenocarcinoma (PDA) tumor cells are deprived of oxygen and nutrients and therefore must adapt their metabolism to ensure proliferation. In some physiological states, cells rely on ketone bodies to satisfy their metabolic needs, especially during nutrient stress. Here, we show that PDA cells can activate ketone body metabolism and that ß-hydroxybutyrate (ßOHB) is an alternative cell-intrinsic or systemic fuel that can promote PDA growth and progression. PDA cells activate enzymes required for ketogenesis, utilizing various nutrients as carbon sources for ketone body formation. By assessing metabolic gene expression from spontaneously arising PDA tumors in mice, we find HMG-CoA lyase (HMGCL), involved in ketogenesis, to be among the most deregulated metabolic enzymes in PDA compared to normal pancreas. In vitro depletion of HMGCL impedes migration, tumor cell invasiveness, and anchorage-independent tumor sphere compaction. Moreover, disrupting HMGCL drastically decreases PDA tumor growth in vivo, while ßOHB stimulates metastatic dissemination to the liver. These findings suggest that ßOHB increases PDA aggressiveness and identify HMGCL and ketogenesis as metabolic targets for limiting PDA progression.


Ketone Bodies , Pancreatic Neoplasms , 3-Hydroxybutyric Acid/metabolism , Animals , Ketone Bodies/metabolism , Mice , Oxo-Acid-Lyases , Pancreas/metabolism
5.
Curr Opin Biotechnol ; 68: 181-185, 2021 04.
Article En | MEDLINE | ID: mdl-33360716

Mutations in the genes encoding isocitrate dehydrogenase 1 (IDH1) and 2 (IDH2) are key drivers of diverse cancers, including gliomas and hematological malignancies. IDH mutations cause neomorphic enzymatic activity that results in the production of the oncometabolite 2-hydroxyglutarate (2-HG). In addition to 2-HG's well-known effects on tumor cells themselves, it has become increasingly clear that 2-HG directly influences the tumor microenvironment (TME). In particular, the non-cell-autonomous impact of 2-HG on the immune system likely plays a major role in shaping disease development and response to therapy. It is therefore critical to understand how IDH mutations affect the metabolism, epigenetics, and functions of tumor-infiltrating immune cells. Such knowledge may point towards new therapeutic approaches to treat IDH-mutant cancers.


Glioma , Isocitrate Dehydrogenase , Cell Physiological Phenomena , Epigenomics , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Tumor Microenvironment/genetics
6.
Blood ; 137(7): 945-958, 2021 02 18.
Article En | MEDLINE | ID: mdl-33254233

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl-coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.


Erythropoiesis/genetics , Hematopoietic Stem Cells/metabolism , Heme/biosynthesis , Isocitrate Dehydrogenase/genetics , Mutation, Missense , Point Mutation , Preleukemia/genetics , Acyl Coenzyme A/biosynthesis , Acyl Coenzyme A/deficiency , Anemia/genetics , Animals , Bone Marrow/pathology , Erythroblasts/metabolism , Gene Knock-In Techniques , Glutarates/metabolism , Heme/deficiency , Heme Oxygenase-1/metabolism , Isocitrate Dehydrogenase/physiology , Ketoglutarate Dehydrogenase Complex/antagonists & inhibitors , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Myeloid Cells/pathology , Myelopoiesis/genetics , Preleukemia/metabolism , Preleukemia/pathology , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , Splenomegaly/etiology , Thrombocytopenia/genetics
7.
Cell Metab ; 28(6): 811-813, 2018 12 04.
Article En | MEDLINE | ID: mdl-30517895

Metabolic reprogramming is a hallmark of cancer cell metabolism. Recently, in Cancer Cell, Ye and colleagues (2018) reported that leukemic cells have the capacity to modulate glucose metabolism in multiple organs of their host, thereby increasing the glucose resources available for malignant cell growth.


Leukemia , Neoplasms , Carbohydrate Metabolism , Cell Transformation, Neoplastic , Glucose , Humans
8.
Cancer Res ; 78(4): 909-921, 2018 02 15.
Article En | MEDLINE | ID: mdl-29269518

Pancreatic ductal adenocarcinoma (PDAC) is characterized by extensive stroma and pathogenic modifications to the peripheral nervous system that elevate metastatic capacity. In this study, we show that the IL6-related stem cell-promoting factor LIF supports PDAC-associated neural remodeling (PANR). LIF was overexpressed in tumor tissue compared with healthy pancreas, but its receptors LIFR and gp130 were expressed only in intratumoral nerves. Cancer cells and stromal cells in PDAC tissues both expressed LIF, but only stromal cells could secrete it. Biological investigations showed that LIF promoted the differentiation of glial nerve sheath Schwann cells and induced their migration by activating JAK/STAT3/AKT signaling. LIF also induced neuronal plasticity in dorsal root ganglia neurons by increasing the number of neurites and the soma area. Notably, injection of LIF-blocking antibody into PDAC-bearing mice reduced intratumoral nerve density, supporting a critical role for LIF function in PANR. In serum from human PDAC patients and mouse models of PDAC, we found that LIF titers positively correlated with intratumoral nerve density. Taken together, our findings suggest LIF as a candidate serum biomarker and diagnostic tool and a possible therapeutic target for limiting the impact of PANR in PDAC pathophysiology and metastatic progression.Significance: This study suggests a target to limit neural remodeling in pancreatic cancer, which contributes to poorer quality of life and heightened metastatic progression in patients. Cancer Res; 78(4); 909-21. ©2017 AACR.


Carcinoma, Pancreatic Ductal/metabolism , Leukemia Inhibitory Factor/metabolism , Neurons/metabolism , Pancreatic Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Female , Heterografts , Humans , Leukemia Inhibitory Factor/genetics , Male , Mice , Neurons/pathology , Pancreas/innervation , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Phosphorylation , RAW 264.7 Cells , Signal Transduction
9.
J Clin Invest ; 126(11): 4140-4156, 2016 11 01.
Article En | MEDLINE | ID: mdl-27701147

The intratumoral microenvironment, or stroma, is of major importance in the pathobiology of pancreatic ductal adenocarcinoma (PDA), and specific conditions in the stroma may promote increased cancer aggressiveness. We hypothesized that this heterogeneous and evolving compartment drastically influences tumor cell abilities, which in turn influences PDA aggressiveness through crosstalk that is mediated by extracellular vesicles (EVs). Here, we have analyzed the PDA proteomic stromal signature and identified a contribution of the annexin A6/LDL receptor-related protein 1/thrombospondin 1 (ANXA6/LRP1/TSP1) complex in tumor cell crosstalk. Formation of the ANXA6/LRP1/TSP1 complex was restricted to cancer-associated fibroblasts (CAFs) and required physiopathologic culture conditions that improved tumor cell survival and migration. Increased PDA aggressiveness was dependent on tumor cell-mediated uptake of CAF-derived ANXA6+ EVs carrying the ANXA6/LRP1/TSP1 complex. Depletion of ANXA6 in CAFs impaired complex formation and subsequently impaired PDA and metastasis occurrence, while injection of CAF-derived ANXA6+ EVs enhanced tumorigenesis. We found that the presence of ANXA6+ EVs in serum was restricted to PDA patients and represents a potential biomarker for PDA grade. These findings suggest that CAF-tumor cell crosstalk supported by ANXA6+ EVs is predictive of PDA aggressiveness, highlighting a therapeutic target and potential biomarker for PDA.


Annexin A6/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell-Derived Microparticles/metabolism , Fibroblasts/metabolism , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Communication , Cell-Derived Microparticles/pathology , Female , Fibroblasts/pathology , Humans , Low Density Lipoprotein Receptor-Related Protein-1/metabolism , Male , Mice , Mice, Nude , Pancreatic Neoplasms/pathology
10.
Proc Natl Acad Sci U S A ; 110(10): 3919-24, 2013 Mar 05.
Article En | MEDLINE | ID: mdl-23407165

Pancreatic ductal adenocarcinoma is one of the most intractable and fatal cancer. The decreased blood vessel density displayed by this tumor not only favors its resistance to chemotherapy but also participates in its aggressiveness due to the consequent high degree of hypoxia. It is indeed clear that hypoxia promotes selective pressure on malignant cells that must develop adaptive metabolic responses to reach their energetic and biosynthetic demands. Here, using a well-defined mouse model of pancreatic cancer, we report that hypoxic areas from pancreatic ductal adenocarcinoma are mainly composed of epithelial cells harboring epithelial-mesenchymal transition features and expressing glycolytic markers, two characteristics associated with tumor aggressiveness. We also show that hypoxia increases the "glycolytic" switch of pancreatic cancer cells from oxydative phosphorylation to lactate production and we demonstrate that increased lactate efflux from hypoxic cancer cells favors the growth of normoxic cancer cells. In addition, we show that glutamine metabolization by hypoxic pancreatic tumor cells is necessary for their survival. Metabolized glucose and glutamine converge toward a common pathway, termed hexosamine biosynthetic pathway, which allows O-linked N-acetylglucosamine modifications of proteins. Here, we report that hypoxia increases transcription of hexosamine biosynthetic pathway genes as well as levels of O-glycosylated proteins and that O-linked N-acetylglucosaminylation of proteins is a process required for hypoxic pancreatic cancer cell survival. Our results demonstrate that hypoxia-driven metabolic adaptive processes, such as high glycolytic rate and hexosamine biosynthetic pathway activation, favor hypoxic and normoxic cancer cell survival and correlate with pancreatic ductal adenocarcinoma aggressiveness.


Carcinoma, Pancreatic Ductal/metabolism , Glycolysis , Hypoxia/metabolism , Pancreatic Neoplasms/metabolism , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Hypoxia , Cell Line, Tumor , Cell Survival , Disease Models, Animal , Glutamine/metabolism , Hexosamines/biosynthesis , Humans , Lactic Acid/metabolism , Male , Metabolic Networks and Pathways , Mice , Mice, Nude , Mice, Transgenic , Models, Biological , Pancreatic Neoplasms/pathology , Transplantation, Heterologous
...