Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Histochem Cell Biol ; 161(6): 449-460, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38430258

RESUMEN

The aim of this study is to determine the influence of the mitochondrial open-reading-frame of the twelve S rRNA-c (MOTS-c) peptide on pancreatic cell physiology. Moreover, in this study, we examined the changes in MOTS-c secretion and expression under different conditions. Our experiments were conducted using laboratory cell line cultures, specifically the INS-1E and αTC-1 cell lines, which represent ß and α pancreatic cells, respectively. As the pancreas is an endocrine organ, we also tested its hormone regulation capabilities. Furthermore, we assessed the secretion of MOTS-c after incubating the cells with glucose and free fatty acids. Additionally, we examined key cell culture parameters such as cell viability, proliferation, and apoptosis. The results obtained from this study show that MOTS-c has a significant impact on the physiology of pancreatic cells. Specifically, it lowers insulin secretion and expression in INS-1E cells and enhances glucagon secretion and expression in αTC-1 cells. Furthermore, MOTS-c affects cell viability and apoptosis. Interestingly, insulin and glucagon affect the MOTS-c secretion as well as glucose and free fatty acids. These experiments clearly show that MOTS-c is an important regulator of pancreatic metabolism, and there are numerous properties of MOTS-c yet to be discovered.


Asunto(s)
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Animales , Supervivencia Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/citología , Ratones , Ratas , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Glucosa/metabolismo , Glucosa/farmacología , Línea Celular , Insulina/metabolismo , Glucagón/metabolismo
2.
Exp Eye Res ; 240: 109806, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272381

RESUMEN

Primary open-angle glaucoma (POAG) is the most common type of glaucoma leading to blindness. The search for ways to prevent/treat this entity is one of the main challenges of today's ophthalmology. One of such solution seems to be biologically active substances of natural origin, such as genistein (GEN), which can affect the function of isolated trabecular meshwork by the inhibition of protein tyrosine kinase. However, the role of GEN in viability as well as myofibroblastic transformation in human trabecular meshwork cells stimulated by TGF-ß is unknown. Using human trabecular meshwork cells (HTMCs) we investigated the effect of genistein on cell viability and myofibroblastic transformation stimulated by TGF-ß1 and TGF-ß2. Using Real-Time PCR, western blot and immunofluorescence we determined the effect on the expression changes of αSMA, TIMP1, collagen 1 and 3 at mRNA and protein level. We found that genistein increases the viability of HTMCs (1, 2, 3 µg/ml; P < 0.05 and 4, 5, 10, 15, 20 µg/ml; P < 0.01). Moreover, we found that addition of 10, 15 and 20 µg/ml is able to prevent myofibroblastic transformation of HTMCs by decreasing αSMA, TIMP1, collagen 1 and 3 mRNA and protein expression (P < 0.01). Based on the obtained results, we can conclude that genistein is a potential factor that can prevent the myofibroblastic transformation of HTMCs accompanying glaucoma. Describing GEN influence on myofibroblastic transformation processes in HTMC allows us to conclude that it can be considered a potential therapeutic agent or a substance supporting treatment in patients with glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Glaucoma , Humanos , Genisteína/farmacología , Glaucoma de Ángulo Abierto/tratamiento farmacológico , Glaucoma de Ángulo Abierto/prevención & control , Glaucoma de Ángulo Abierto/genética , Malla Trabecular/metabolismo , Células Cultivadas , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta2/metabolismo , Glaucoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Colágeno/metabolismo
3.
Eur J Clin Pharmacol ; 80(2): 185-202, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38059982

RESUMEN

PURPOSE: Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans. METHODS: PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review. RESULTS: Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements. CONCLUSION: Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Enfermedades Musculares , Sustancias para Mejorar el Rendimiento , Humanos , Receptores Androgénicos , Andrógenos , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología
4.
Children (Basel) ; 10(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761477

RESUMEN

Spexin (SPX) is a peptide that plays an important role in the regulation of food intake and body weight (BW) by the effect on carbohydrate-lipid metabolism. However, the role of SPX in fetal life, in children, and in adolescent metabolism is limited. Therefore, we decided to check whether obesity affects the concentration of SPX in the mother's peripheral blood (MB) and umbilical cord blood (UCB). Using MB and UCB sera on the day of delivery obtained from 48 women (24 non-obese and 24 obese) and commercially available Elisa kits and colorimetric assays, we determined changes in SPX and the relationship between SPX concentration and other metabolic and anthropometric markers (body weight and BMI) on the day of delivery and in children at the age of 36 months. We found lower concentrations of SPX in MB (p < 0.05) and UCB (p < 0.01) derived from obese women (BMI > 30) and a moderate linear correlation (r = 0.4429; p < 0.01) between SPX concentrations in MB and UCB. We also noted that the concentration of SPX is not correlated with the child's body weight on the day of birth (r = -0.0128). However, there is a relationship between SPX at birth and body weight at 3 years of age (r = -0.3219; p < 0.05). Based on the obtained results, it can be assumed that spexin is one of the factors modulating the child's metabolism already in the fetal period and can be considered a potential marker of future predisposition to obesity. However, confirmation of this thesis requires additional research.

5.
Nutr Rev ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528052

RESUMEN

CONTEXT: It is well known that the microbiome undergoes cyclical diurnal rhythms. It has thus been hypothesized that meal timing may affect gut microbial composition, function, and host health. OBJECTIVE: This review aims to examine the effects of time-restricted eating (TRE) and Ramadan fasting (RF) on the composition of the gut microbiota in animal and human studies. The associations between composition of microbiota and host metabolic parameters are also examined. DATA SOURCES: A search was performed on the PubMed, Cochrane, Scopus, and Web of Science databases up to December 31, 2022. The search strategy was performed using the Medical Subject Heading (MeSH) terms "intermittent fasting" and "gastrointestinal microbiome" and the key words "Ramadan fasting" and "microbes." DATA EXTRACTION: Seven human studies (4 TRE and 3 RF) and 9 animal studies (7 TRE, 2 RF-like) were retrieved. DATA ANALYSIS: TRE and RF in human studies lead to an increase in gut microbial community alpha-diversity. In animal studies (both TRE and RF-like), fasting is not associated with improved alpha-diversity, but enhancement of microbial fluctuation is observed, compared with high-fat diet ad libitum groups. Within Firmicutes and Bacteroidetes phyla, no specific direction of changes resulting from fasting are observed in both animals and human. After TRE or RF, a greater abundance of the Faecalibacterium genus is observed in human studies; changes in Lactobacillus abundance are found in animal studies; and increases in Akkermansia are seen both in humans and in animals fed a feed-pellet diet. Only 2 human studies show a beneficial correlation between microbiota changes and host metabolic (HDL cholesterol) or anthropometric parameters (body mass index). CONCLUSIONS: These findings support the importance of both regimens in improving the gut microbiota composition. However, based on results of animal studies, it can be suggested that diet remains the essential factor in forming the microbiota's environment. SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42021278918.

6.
Mol Cell Endocrinol ; 577: 112037, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543162

RESUMEN

Ostarine is the most popular compound in the selective androgen receptor modulator group (SARMs). Ostarine is used as a physical performance-enhancing agent. The abuse of this agent in higher doses may lead to severe side effects. Here, we evaluate the effects of ostarine on the heart. We utilized a cardiomyocyte H9C2 cell line, isolated primary female and male cardiac fibroblast cells, as well as hearts obtained from rats. Ostarine increased the accumulation of two fibrosis protein markers, αSMA and fibronectin (p < 00.1) in male, but not in female fibroblast cells. Ostarine increased the expression of the cardiomyopathy marker ßMhc in the H9C2 cell line (p < 0.05) and in the heart in rats (p < 0.01). The unfavorable changes were observed at high ostarine doses. Moreover, a decrease in viability and an increase in cytotoxicity marker LDH were observed already at lowest dose (1 nmoL/l). Taken together, our results suggest that ostarine is cardiotoxic which may be more relevant in males than in females.


Asunto(s)
Anilidas , Miocitos Cardíacos , Masculino , Ratas , Femenino , Animales , Miocitos Cardíacos/metabolismo , Anilidas/metabolismo , Anilidas/farmacología , Andrógenos/metabolismo , Línea Celular
7.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457222

RESUMEN

Ostarine (also known as enobosarm or Gtx-024) belongs to the selective androgen receptor modulators (SARMs). It is a substance with an aryl-propionamide structure, classified as a non-steroidal compound that is not subjected to the typical steroid transformations of aromatization and reduction by α5 reductase. Despite ongoing research on ostarine, knowledge about it is still limited. Earlier studies indicated that ostarine may affect the metabolism of muscle tissue, but this mechanism has not been yet described. We aimed to investigate the effect of ostarine on the differentiation and metabolism of muscle. Using C2C12 and L6 cells, as well as muscles obtained from rats administered ostarine, we showed that ostarine stimulates C2C12 and L6 proliferation and cell viability and that this effect is mediated by androgen receptor (AR) and ERK1/2 kinase activation (p < 0.01). We also found that ostarine stimulates muscle cell differentiation by increasing myogenin, MyoD, and MyH expression in both types of cells (p < 0.01). Moreover, pharmacological blocking of AR inhibits the stimulatory effect of ostarine. We further demonstrated that 30 days of ostarine administration increases myogenin, MyoD, and MyH expression, as well as muscle mass, in rats (p < 0.01). Based on our research, we conclude that ostarine stimulates muscle tissue proliferation and differentiation via the androgen receptor.


Asunto(s)
Músculos , Receptores Androgénicos , Anilidas , Animales , Diferenciación Celular , Músculos/metabolismo , Miogenina/genética , Ratas , Receptores Androgénicos/metabolismo
8.
Biology (Basel) ; 10(10)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681131

RESUMEN

MOTS-c peptide is a member of the group of mitochondria-derived peptides (MDP). It is a product of the open reading frame in the 12S RNA gene. Due to its features and functions in the body, this peptide is classified as a hormone. The first publications indicated that this hormone improves insulin sensitivity and lowers body weight in obese animals. This suggests that it may be an important peptide in maintaining the body's energy homeostasis. The aim of our work was to investigate the potential role of MOTS-c peptide during pregnancy, which is a condition prone to metabolic disorders. The research covered healthy, obese women and women with thyroid disorders. The obtained results indicated an increase in the concentration of MOTS-c in the blood of mothers and newborns in the obese group as compared to the healthy control group and a corresponding decrease in the concentration of this peptide in mothers and newborns in the group with hypothyroidism compared to the obese group. Moreover, we also observed a strong positive correlation between the concentration of MOTS-c in maternal blood and in umbilical cord blood. In summary, the MOTS-c peptide shows changes in blood concentration in various physiological states and may, in the future, become an important tool in the fight against metabolic diseases such as obesity or type 2 diabetes.

9.
Mol Cell Endocrinol ; 536: 111420, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34384849

RESUMEN

Spexin (SPX) is a 14 aa peptide discovered in 2007 using bioinformatics methods. SPX inhibits food intake and regulates lipid, and carbohydrate metabolism. Here, we evaluate the ability of SPX at improving metabolic control and liver function in obese and type 2 diabetic animals. The effects of 30 days SPX treatment of mice with experimentally induced obesity (DIO) or type 2 diabetes (T2DM) on serum glucose and lipid levels, insulin sensitivity and hormonal profile (insulin, glucagon, adiponectin, leptin, TNF alpha, IL-6 and IL-1ß) are characterized. In addition, alterations of hepatic lipid and glycogen contents are evaluated. We report that SPX decreases body weight in healthy and DIO mice, and reduces lipid content in all three animal groups. SPX improves insulin sensitivity in DIO and T2DM animals. In addition, SPX modulates hormonal and metabolic profile by regulating the concentration of adiponectin (concentration increase) and leptin (concentration decrease) in the serum blood of DIO and T2DM mice. Lastly, SPX decreases lipid content as well as IL-6 and TNF-α protein levels in liver of DIO and T2DM mice, and reduces IL-6 and TNF-alpha concentrations in the serum derived from T2DM mice. Based on our results, we conclude that SPX could be involved in the development of obesity and type 2 diabetes mellitus and it can be further evaluated as a potential target for therapy of DIO and T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Hormonas Peptídicas/administración & dosificación , Animales , Glucemia/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animales de Enfermedad , Femenino , Glucógeno , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/análisis , Pruebas de Función Hepática , Ratones , Obesidad/inducido químicamente , Obesidad/metabolismo
10.
Genes (Basel) ; 12(5)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067710

RESUMEN

Peptide hormones play a prominent role in controlling energy homeostasis and metabolism. They have been implicated in controlling appetite, the function of the gastrointestinal and cardiovascular systems, energy expenditure, and reproduction. Furthermore, there is growing evidence indicating that peptide hormones and their receptors contribute to energy homeostasis regulation by interacting with white and brown adipose tissue. In this article, we review and discuss the literature addressing the role of selected peptide hormones discovered in the 21st century (adropin, apelin, elabela, irisin, kisspeptin, MOTS-c, phoenixin, spexin, and neuropeptides B and W) in controlling white and brown adipogenesis. Furthermore, we elaborate how these hormones control adipose tissue functions in vitro and in vivo.


Asunto(s)
Tejido Adiposo/metabolismo , Hormonas Peptídicas/metabolismo , Animales , Homeostasis , Humanos , Hormonas Peptídicas/química , Hormonas Peptídicas/genética
11.
Biology (Basel) ; 10(4)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920712

RESUMEN

The increasing prevalence of overweight and obesity and the rising awareness of their negative consequences are forcing researchers to take a new view of nutrition and its consequences for the metabolism of whole organisms as well as the metabolism of their individual systems and cells. Despite studies on nutrition having been carried out for a few decades, not many of them have focused on the impacts of these diets on changes in the metabolism and endocrine functions of isolated adipocytes. Therefore, we decided to investigate the effects of the long-term use (60 and 120 days) of a high-fat diet (HFD) and of a high-protein diet (HPD) on basic metabolic processes in fat cells-lipogenesis, lipolysis, and glucose uptake-and endocrine function, which was determined according to the secretion of adipokines into the incubation medium. Our results proved that the HPD diet improved insulin sensitivity, increased the intracellular uptake of glucose (p < 0.01) and its incorporation into lipids (p < 0.01) and modulated the endocrine function of these cells (decreasing leptin secretion; p < 0.01). The levels of biochemical parameters in the serum blood also changed in the HPD-fed rats. The effects of the HFD were inverse, as expected. We observed a decrease in adiponectin secretion and a diminished rate of lipogenesis (p < 0.01). Simultaneously, the secretion of leptin and resistin (p < 0.01) from isolated adipocytes increased. In conclusion, we noted that the long-term use of HPD and HFD diets modulates the metabolism and endocrine functions of isolated rat adipocytes. We summarize that an HFD had a negative effect on fat tissue functioning, whereas an HPD had positive results, such as increased insulin sensitivity and an improved metabolism of glucose and lipids in fat tissue. Moreover, we noticed that negative metabolic changes are reflected more rapidly in isolated cells than in the metabolism of the whole organism.

12.
Animals (Basel) ; 11(2)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671411

RESUMEN

Spexin (SPX) is a highly conservative peptide hormone containing 14 amino acids and was discovered in 2007 by bioinformatics methods. However, nothing is yet known about its role in the metabolism of birds, including broilers. The aim of this study was to investigate the effect of short-term fasting (2, 4, and 8 h) on the concentration of SPX in blood serum and the expression levels of the genes encoding this peptide (SPX1) and its receptors, GALR2 and GALR3, in the tissues involved in carbohydrate and lipid metabolism (muscles, adipose tissue, and liver). We also analyzed the mRNA expression of these genes in various chicken tissues. Moreover, we studied the correlation between the serum level of SPX and other metabolic parameters (insulin, glucagon, glucose, triglycerides, and cholesterol). Using RT-qPCR, we found that SPX1, GALR2, and GALR3 are expressed in all investigated tissues in broiler chicken. Moreover, using a commercially available radio-immunoassay, we noted an increase of the SPX level in blood serum after 4 and 8 h of fasting compared to nonfasted animals (p < 0.05). This increase was positively correlated with glucagon concentration (r = 0.341; p < 0.05) and negatively with glucose concentration (r = -0.484; p < 0.01). Additionally, we discovered that in the short term, food deprivation leads to the expression regulation of SPX1, GALR2, and GLAR3 in tissues associated with metabolism of carbohydrates and lipids. The obtained results indicate that SPX is involved in the regulation of metabolism in broiler chickens.

13.
Genes (Basel) ; 13(1)2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-35052420

RESUMEN

SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Músculo Esquelético/citología , Hormonas Peptídicas/metabolismo , Condicionamiento Físico Animal , Receptor de Galanina Tipo 1/metabolismo , Receptor de Galanina Tipo 2/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Hormonas Peptídicas/genética , Fosforilación , Receptor de Galanina Tipo 1/genética , Receptor de Galanina Tipo 2/genética
14.
BMC Vet Res ; 16(1): 343, 2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32943074

RESUMEN

BACKGROUND: Equine endometrosis is a chronic degenerative condition, described as endometrial fibrosis that forms in the stroma, under the basement membrane and around the endometrial glands. The role of lysophosphatidic acid (LPA) in the development of tissue fibrosis varies depending on the organ, and its profibrotic role in mare endometrosis remains unclear. The study aimed to establish the endometrial presence of LPA and its receptors (LPAR1-4), together with its effects on connective tissue growth factor (CTGF) and prostaglandins (PG) secretion from equine endometrium under physiological (estrous cycle), or pathological conditions (endometrosis). Mare endometria in the mid-luteal phase (n = 5 for each category I, IIA, IIB, III of Kenney and Doig) and in the follicular phase (n = 5 for each category I, IIA, III and n = 4 for IIB) were used. In experiment 1, the levels of LPA, LPAR1-4 mRNA level and protein abundance were investigated in endometria at different stages of endometrosis. In experiment 2, the in vitro effect of LPA (10- 9 M) on the secretion of CTGF and PGs from endometrial tissue explants at different stages of endometrosis were determined. RESULTS: Endometrial LPA concentration was higher in the mid-luteal phase compared to the follicular phase in category I endometrium (P < 0.01). There was an alteration in endometrial concentrations of LPA and LPAR1-4 protein abundance in the follicular phase at different stages of endometrosis (P < 0.05). Additionally, LPA increased the secretion of PGE2 from category I endometrium in both phases of the estrous cycle (P < 0.05). The effect of LPA on the secretion of CTGF and PGF2α from endometrial tissue was altered depending on different stages of endometrosis (P < 0.05). CONCLUSION: Our data indicate that endometrosis disturbs proper endometrial function and is associated with altered endometrial LPA concentration, its receptor expression and protein abundance, PGE2/PGF2α ratio, and CTGF secretion in response to LPA. These changes could influence several physiological events occurring in endometrium in mare during estrous cycle and early pregnancy.


Asunto(s)
Endometriosis/veterinaria , Endometrio/metabolismo , Enfermedades de los Caballos/metabolismo , Lisofosfolípidos/metabolismo , Animales , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Dinoprostona/metabolismo , Endometriosis/metabolismo , Endometrio/patología , Ciclo Estral/metabolismo , Femenino , Fibrosis , Enfermedades de los Caballos/patología , Caballos , ARN Mensajero/metabolismo , Receptores del Ácido Lisofosfatídico/metabolismo , Enfermedades Uterinas/veterinaria
15.
Gen Comp Endocrinol ; 294: 113498, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32360543

RESUMEN

Fibroblast growth factor 1 (FGF-1), also known as acidic fibroblast growth factor (aFGF), is a growth factor and signaling protein encoded by the Fgf1 gene. Previous studies have shown that FGF-1 may also participate in the regulation of glucose metabolism, both in healthy organisms and in pathological conditions such as diabetes. Because insulin the main regulator of glucose metabolism is secreted from pancreatic beta cells, we investigated whether FGF-1 directly affects the secretion of this hormone and regulates the metabolism of beta cells and isolated pancreatic islets. By using insulin-producing INS-1E cells and isolated pancreatic islets, we investigated the effect of FGF-1 on cell proliferation, viability, apoptosis, and insulin expression and secretion. Our study showed that FGF1 and fibroblast growth factor receptors (FgfRs: FgfR1, FgfR2, FgfR3, and FgfR4) are present on mRNA level in INS-1E cells and isolated rat pancreatic islets. We also proved that FGF1 stimulates the proliferation of INS-1E beta cells and enhances the viability of these cells and that of isolated pancreatic islet cells, and that ERK1/2 kinase is involved in the regulation of INS-1E cell proliferation. Moreover, we found that FGF1 can stimulate insulin secretion from both INS-1E cells and isolated rat pancreatic islets. Thus, the FGF1 peptide increases cell survival and decreases cell death. The obtained results indicate that FGF1 may play a role in controlling the physiology and metabolism of pancreatic beta cells as well as glycemia.


Asunto(s)
Factor 1 de Crecimiento de Fibroblastos/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Proliferación Celular , Supervivencia Celular , Insulina/metabolismo , Secreción de Insulina , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
16.
Theriogenology ; 150: 150-157, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31973963

RESUMEN

The innate and adaptive immune mechanisms are key components of regulation of reproductive physiological function and uterine disorders in equine uterus. The predominant immunological response in equine endometrium, characterized by an innate immune response, occurs under estrogens influence, in the follicular phase. Although, the increase in immune-related genes in equine endometrium during estrus has been suggested to play a role in uterine clearance after mating, immune cells and their product, i.e. cytokines play also mandatory role in the luteal development and maintenance, regression of equine corpus luteum, as well as in early pregnancy. Innate immune response is nonspecific and acts as the first line of defense against pathogens, foreign stimuli that include constituents of seminal fluid and local infections (endometritis). It has been recently established that a phagocytosis-independent mechanism to restrain bacteria, by means of neutrophil extracellular traps (NETs) formation, is involved in pathogenesis of in mare endometrial fibrosis (endometrosis). Moreover, persistent macrophages and mast cell activation could also have pro-fibrotic roles by secreting great amounts of pro-fibrotic factors and lead to fibrosis. This review will highlight the involvement of immune key components of the innate and adaptive immune system and their products in equine uterus and their contribution to reproductive physiological function and uterine disorders.


Asunto(s)
Endometrio/fisiología , Caballos/fisiología , Monocitos/fisiología , Neutrófilos/fisiología , Animales , Endometrio/inmunología , Epigénesis Genética , Femenino , Caballos/genética , Caballos/inmunología , Monocitos/inmunología , Neutrófilos/inmunología
17.
Artículo en Inglés | MEDLINE | ID: mdl-29416857

RESUMEN

BACKGROUND: In order to discover new strategies to replace antibiotics in the post-antibiotic era in meat-type chicken production, two new synbiotics were tested: (Lactobacillus salivarius IBB3154 plus galactooligosaccharide (Syn1) and Lactobacillus plantarum IBB3036 plus raffinose family oligosaccharides (Syn2). METHODS: The synbiotics were administered via syringe, using a special automatic system, into the egg air chamber of Cobb 500 broiler chicks on the 12th day of egg incubation (2 mg of prebiotics + 105 cfu bacteria per egg). Hatched roosters (total 2,400) were reared on an experimental farm, kept in pens (75 animals per pen), with free access to feed and water. After 42 d animals were slaughtered. Blood serum, pancreas, duodenum and duodenum content were collected. RESULTS: Syn2 increased trypsin activity by 2.5-fold in the pancreas and 1.5-fold in the duodenal content. In the duodenum content, Syn2 resulted in ca 30% elevation in lipase activity and 70% reduction in amylase activity. Syn1 and Syn2 strongly decreased expression of mRNA for GLP-1 and GIP in the duodenum and for GLP-1 receptors in the pancreas. Simultaneously, concentrations of the incretins significantly diminished in the blood serum (P < 0.05). The decreased expression of incretins coincides with changed activity of digestive enzymes in the pancreas and in the duodenal content. The results indicate that incretins are involved in the action of Syn1 and Syn2 or that they may even be their target. No changes were observed in key hormones regulating metabolism (insulin, glucagon, corticosterone, thyroid hormones, and leptin) or in metabolic indices (glucose, NEFA, triglycerides, cholesterol). Additionally, synbiotics did not cause significant changes in the activities of alanine and aspartate aminotransferases in broiler chickens. Simultaneously, the activity of alkaline phosphatase and gamma glutamyl transferase diminished after Syn2 and Syn1, respectively. CONCLUSION: The selected synbiotics may be used as in ovo additives for broiler chickens, and Syn2 seems to improve their potential digestive proteolytic and lipolytic ability. Our results suggest that synbiotics can be directly or indirectly involved in incretin secretion and reception.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...